
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 504 — #530

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

char c0 = cBuf[0]; // OK, special case, char member of S2
char c1 = cBuf[1]; // Bug? -- platform dependent (might be UB)
char c2 = cBuf[2]; // " " " " " "
char c3 = cBuf[3]; // " " " " " "

assert('A' == ucBuf[0]); // OK, corresponds to s.c
int i1 = ucBuf[1]; // Bug (UB), convert from indeterminate value.
int i3 = ucBuf[2]; // OK, convert from value-representing byte.

++ucBuf[3]; // OK, increment value-representing byte.

assert('A' == cBuf[0]); // OK, special case: corresponds to s.c
int i2 = cBuf[1]; // Bug (UB), convert from indeterminate value.
int i4 = cBuf[2]; // Bug? -- platform dependent (might be UB)

++cBuf[3]; // Bug? -- platform dependent (might be UB)
}

While it is always permissible to read any value-representing byte from an array of
unsigned char, in the special case (e.g., cBuf[0] above) where the byte being read cor-
responds to an initialized char or signed char from the original object s, the initialized
byte can be read reliably from an array of char, even if char is signed on the platform.
Note that we were able to reliably access the copy of s.c in both ucBuf and cBuf because
the original initialized object (1) was of standard-layout type and (2) had a char as its
first nonstatic data member, which always has offset 0. Had that member not been first,
we could have instead employed the offsetof macro to learn, in a portable way, its precise
location within the array — one of the few unambiguously well-defined uses of offsetof; see
Aggressive use of offsetof on page 520. In no event, however, are we permitted to “read”
or operate on a byte corresponding to padding bytes as those are always of indeterminate
value. What’s more, if the original object was not of standard-layout type, none of the fields
could be portably accessed through the byte array, although offsetof would work for many
types and platforms.
Finally, now that we understand the special privileges afforded only to unsigned ordinary
character types, let’s explore the pitfalls that await the programmer who abuses this infor-
mation in a misguided attempt to optimize copying of objects. For example, the myMemCpy
function (below) provides a valid, albeit suboptimal, alternative implementation satisfying
the functional requirements of std::memcpy (but not std::memmove):
#include <cstddef> // std::size_t

void* myMemCpy(void* dstPtr, const void* srcPtr, std::size_t numBytes)
{

unsigned char* dp = reinterpret_cast<unsigned char*>(dstPtr);
const unsigned char* sp = reinterpret_cast<const unsigned char*>(srcPtr);

504

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




