
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 499 — #525

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

A common misinterpretation is that — because a POD type can be copied around as bytes
— it is permissible to interpret any suitably aligned sequence of bytes as an object of that
type:
void ex5()
{

struct S { short x, y; } s = { 1, 2 }; // POD type initialized to { 1, 2 }
int i;
static_assert(sizeof s == sizeof i, ""); // true on most platforms
std::memcpy(&i, &s, sizeof s); // Bug (UB), S is not int.
assert(((S&)i).y == 2); // Maybe?!

}

Modifying a const object in any way has undefined behavior; hence, even a trivially copyable
type that contains a nonstatic const data member is ineligible to be copied via std::memcpy:
void ex6()
{

struct S { const int x; int y; } s1 = {3, 4}, s2 = {}; // S is trivial.
static_assert(std::is_trivially_copyable<S>::value, "");
std::memcpy(&s2, &s1, sizeof(S)); // Bug (UB), changes the value of const x
assert(s2.y == 4); // Maybe?!

}

A base-class object of even POD type is ineligible to be the source or destination of an
std::memcpy:
void ex7()
{

struct Bx { char c; } bx1 = { 11 }, bx2 = { 22 }; // nonempty POD struct
struct Dx : Bx { } dx1 = { }, dx2 = { }; // nonempty POD struct

// Bug (UB), copy from base-class subobject.
std::memcpy(&bx1, static_cast<Bx*>(&dx2), sizeof(Bx));
assert(bx1.c == 0); // Maybe?!

// Bug (UB), copy to base-class subobject.
std::memcpy(static_cast<Bx*>(&dx1), &bx2, sizeof(Bx)); // Bug, UB
assert(static_cast<Bx&>(dx1).c == 22); // Maybe?!

}

Note that if in, say, generic code we were to use std::memcpy to copy an empty POD
object (e.g., by2 below) of nonzero size to a base class object of that same type, we might
inadvertently clobber the first data member (e.g., c) in a derived-class object (e.g., dy1)
that employs the empty base optimization:

499

lorihughes
Pencil
[transpose. Then set nonstatic data member in gloss font and static in code font]

lorihughes
Pencil




