
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 486 — #512

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

template <typename T>
typename std::enable_if<std::is_copy_assignable<T>::value>::type
optimizedCopy2(T* dest, const T* first, const T* last)

// Copy elements from range [first, last) to the range starting at dest.
// This function does not participate in overload resolution unless
// std::is_copy_assignable<T>::value is true.

{
// ... (body including static_assert unchanged from optimizedCopy above)

}

In the example above, the return type of optimizedCopy2 will be void if
std::is_copy_assignable<T>::value is true and ill formed otherwise. Unlike our previous
use of a static_assert in the body of the original optimizedCopy, an ill formed specializa-
tion of a function template does not necessarily result in a compile-time error but, instead,
eliminates that specialization from the overload set, thereby allowing another, viable over-
load, if any, to be selected instead. In particular, note that this way, the static_assert
in the body of an ill formed specialization never fires and is therefore an entirely redun-
dant defensive check. An additional advantage of using std::enable_if in this example is
that the copy assignable constraint is expressed, in addition to any English documentation,
directly in the programmatic interface. On the other hand, for a function template such as
optimizedCopy2, having just a static_assert might produce a more comprehensible error
message than, e.g., “Error - no matching function for optimizedCopy2.”31

There are vanishingly few cases in practice where std::is_trivially_copy_constructible
or std::is_trivially_copy_assignable would be appropriate in the implementation of
a function template as there’s nothing special in the core language that comports with
them. (Satisfying the requirements of one or both of these interface traits is neither nec-
essary nor sufficient for the argument type to be trivially copyable.) What’s more, a type
that is trivially copyable might not satisfy either of these interface traits, e.g., due to the
trait’s additional requirements, such as public accessibility, invocability, etc. Conversely,
std::is_trivially_copyable identifies precisely the superset of trivial types that, for
example, may be safely copied via std::memcpy because this core trait takes into account
all five (including the destructor) of the relevant special member functions associated with
being trivially copyable, and yet it would be rare to see std::is_trivially_copyable used
properly in the interface of a well-specified function template unless that template provides
a low-level service. Hence, core traits properly belong to the implementation of generic func-
tions, whereas interface traits almost always reside in the interface (but see Potential Pitfalls
— Ineligible use of std::memcpy on page 497).
When it comes to class templates, there are other kinds of appropriate uses of
std::is_trivially_copy_assignable and its ilk. Suppose, for example, that we want to
guarantee that a class template that wraps some other type (e.g., Wrap<T>) is nonassignable,
copy assignable, or trivially copy assignable corresponding to the existence and triv-
iality of the copy-assignment operation defined for its template type argument, T. The

31In C++20, a requires clause (part of the concepts feature) provides an easier-to read alternative to
std::enable_if and also produces a more comprehensible error message when the requirement is not met.

486

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Inserted Text
-




