
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 48 — #74

i
i

i
i

i
i

Delegating Ctors Chapter 1 Safe Features

#include <iostream> // std::cout

struct S3
{

S3() { std::cout << "S3() "; }
S3(int) : S3() { std::cout << "S3(int) "; throw 0; }
~S3() { std::cout << "~S3() "; }

};

void f() try { S3 s(0); } catch(int) { }
// prints "S3() S3(int) ~S3() " to stdout

Use Cases

Avoiding code duplication among constructors

Many consider avoiding gratuitous code duplication a best practice. Having one ordinary
member function call another has always been an option, but having one constructor directly
invoke another constructor has not. Classic workarounds included repeating the code or
else factoring the code into a private member function that would be called from multiple
constructors. The drawback with this workaround is that the private member function,
not being a constructor, would be unable to make use efficiently of member initializer lists
to initialize base classes and data members. As of C++11, delegating constructors can be
used to minimize code duplication when some of the same operations are performed across
multiple constructors without having to forgo efficient initialization. Consider an IPV4Host
class representing a network endpoint that can be constructed either (1) by a 32-bit address
and a 16-bit port or (2) by an IPV4 string with XXX.XXX.XXX.XXX:XXXXX format1:
#include <cstdint> // std::uint16_t, std::uint32_t
#include <string> // std::string

class IPV4Host
{

// ...
private:

int connect(std::uint32_t address, std::uint16_t port);

public:
IPV4Host(std::uint32_t address, std::uint16_t port)
{

if (!connect(address, port)) // code duplication: BAD IDEA
{

throw ConnectionException{address, port};

1Note that this initial design might itself be suboptimal in that the representation of the IPV4 address
and port value might profitably be factored out into a separate value-semantic class, say, IPV4Address, that
itself might be constructed in multiple ways; see Potential Pitfalls — Suboptimal factoring on page 51.

48

lorihughes
Cross-Out




