
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 468 — #494

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

we can return to our original implementation of readAndProcess eschewing the cleanup code
while retaining program correctness.
We might refer to a class like Point3, which validates its invariants on destruction, as
notionally trivially destructible because it can be used as if it were trivially destructible.
In generic software that does not know that a type is notionally trivially destructible, the
Point3 class might suffer some performance loss relative to Point, especially in a debug
build, but the semantics of a correct program do not change. Note, however, that when we
skip Point3’s destructor invocation, we give up — even in debug mode — the defensive
checks in Point3’s destructor that might catch a bug in our program.
Though useful for human discourse, notionally trivially destructible types are not considered
trivially destructible by the compiler or by any general-purpose library and thus are neither
literal types (see Section 2.1.“constexpr Functions” on page 257) nor trivially copyable
types, as both of these properties require trivial destructibility. An notionally trivially
destructible type cannot, therefore, be used where either of these properties is an arbiter of
correctness:
#include <cstring> // std::memcpy

char array1[Point {1, 2}.d_x]; // OK, Point is a literal type.
char array2[Point3{1, 2}.d_x]; // Error, Point3 isn't a literal type.

void f(Point* d, const Point* s) { std::memcpy(d, s, sizeof *s); } // OK
void f(Point3* d, const Point3* s) { std::memcpy(d, s, sizeof *s); } // Bug, UB

// Point3 is not trivially copyable; hence, f's behavior is undefined (UB).

In the code snippet above, using Point3 in an array-size computation will fail to compile,
whereas the original Point class will work just fine; see Compile-time constructible, literal
types (trivially destructible) on page 462. Although using std::memcpy to copy objects of
trivially copyable type such as Point is valid (see Fixed-capacity string (trivially copyable)
on page 470), using std::memcpy to propagate values of a non-trivially copyable type such
as Point3 has undefined behavior; see Potential Pitfalls — Ineligible use of std::memcpy
on page 497.
In a more aggressive version of this runtime optimization technique, even types that allocate
memory can be considered notionally trivially destructible when the memory that would be
deallocated by the destructor can somehow be reclaimed in other ways.27

Finally, since the code in the destructor for Point3 is active only in a debug build, we might
be tempted to define a point class (e.g., Point4) for which the entire user-provided destructor

27The introduction of std::pmr::monotoni_resource and std::pmr::unsynchronized_pool_resource in
C++17 enables omitting destructor invocation for some non-trivially destructible types through the use
of local allocators supplied at construction that reclaim all associated memory when they are destroyed,
independently of whether the objects that requested the memory ever freed the memory themselves; see
lakos17a, time 00:38:19. Note that this optimization technique can also be applied at the design level —
e.g., to implement efficient garbage collection of cyclically connected networks of objects allocated from a
single local memory arena; see lakos19, time 01:12:45.

468

lorihughes
Cross-Out

[A, not An]




