
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 467 — #493

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

shapeEncodings[elemIdx++].d_vertex.~Point2();
}

}
} // The local shapeEncodings array goes out of scope.

But what if we know that our point class doesn’t manage any resources that might leak?
A common practice during software testing, and sometimes even in production, is to check
the invariants of a class within its destructor to verify that no class operation or spurious
program defect has left the object in an invalid state. Imagine applying this technique to
a variation on the original Point class for which d_x and d_y are always within the range
-5000 to +5000. We might choose to instrument our revised class (e.g., Point3) to enforce
these invariants during development:
#include <cassert> // standard C assert macro

struct Point3 // trivially constructible but not trivially destructible
{

int d_x, d_y; // same data as before

~Point3() // Destructor is user­provided; hence, non­trivial.
{

assert(­5000 <= d_x); assert(d_x <= 5000);
assert(­5000 <= d_y); assert(d_y <= 5000);

}
};

Class Point3 checks that both d_x and d_y satisfy their object invariants during destruction,
but only in a debug build — i.e., one in which the NDEBUGmacro is not defined.26 The addition
of this user-provided destructor again makes our point class non-trivially destructible in any
build mode. Just as for ShapeElem2, we must provide a destructor for a union element (e.g.,
ShapeElem3) employing Point3 as the type of its d_vertex member:
union ShapeElem3 // like ShapeElem except no longer trivially destructible
{

int d_numVertices;
Point3 d_vertex; // revised point having a non­trivial destructor

~ShapeElem3() { } // required since Point3's non­trivially destructible
};

Again, ShapeElem3’s empty destructor does not invoke the destructor for either of its mem-
bers, but, unlike ShapeElem2, failing to destroy a possibly active Point3 member is accept-
able because Point3 has a destructor that neither releases a resource nor produces a side
effect that would — in any way— affect the correctness of an already-correct program. Thus,

26A proposal for a more general C++ assertion facility — known widely as “contracts” — narrowly
missed being included in C++20 and is the focus of an ongoing study group (SG21) for future inclusion in
C++; see dosreis18.

467

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Highlight
[set in glossary font]




