
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 46 — #72

i
i

i
i

i
i

Delegating Ctors Chapter 1 Safe Features

Constructors Calling Other Constructors

The use of the name of the class in the initializer list of that class’s constructor enables
delegating initialization to another constructor of the same class.

Description

A delegating constructor is a constructor of a user-defined type (UDT)— i.e., class,
struct, or union — that invokes another constructor defined for the same UDT as part of
its initialization of an object of that type. The syntax for invoking another constructor is to
specify the name of the type as the only element in the member initializer list:
#include <string> // std::string

struct S0
{
int d_i;
std::string d_s;

S0(int i) : d_i(i) {} // nondelegating constructor
S0() : S0(0) {} // OK, delegates to S0(int)
S0(const char* s) : S0(0), d_s(s) {} // Error, delegation must be on its own

};

Multiple delegating constructors can be chained together, one calling exactly one other, so
long as cycles are avoided; see Potential Pitfalls — Delegation cycles on page 50. Once a
target — i.e., invoked via delegation — constructor returns, the body of the delegator is
invoked:
#include <iostream> // std::cout

struct S1
{

S1(int, int) { std::cout << 'a'; }
S1(int) : S1(0, 0) { std::cout << 'b'; }
S1() : S1(0) { std::cout << 'c'; }

};

void f()
{

S1 s; // OK, prints "abc" to stdout
}

46

lorihughes
Cross-Out

lorihughes
Inserted Text
The body of the delegating constructor is executed after the constructor to which it delegates has returned:




