
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 427 — #453

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

The defaulted destructor must be nondeleted, which requires that each base class and
nonstatic member destructor also be nondeleted and accessible:
// Type Is trivial?
struct S5a { S5a() = default; }; // yes
struct S5b { S5b() = default; ~S5b(); }; // no, user-provided dtor
struct S5c { S5c() = default; ~S5c() = default; }; // yes
struct S5d { S5d() = default; ~S5d() = delete; }; // no, deleted dtor
struct S5e { private: ~S5e() = default; }; // Yes, but dtor is private.

// Type Is trivial?
struct S5f : S5a { }; // Yes, S5a base class has trivial destructor.
struct S5g : S5b { }; // No, S5b base class has non-trivial destructor.
struct S5h { S5c c; }; // Yes, S5c member has trivial destructor.
struct S5i { S5d d[5]; }; // No, S5d has a deleted destructor.
struct S5j : S5e { }; // No, S5e base class destructor is not accessible.

Note that S5e above is trivial, but the destructor is private and cannot be used except
by friends. The destructor for S5j is deleted because it cannot access the destructor
for base class S5e, making S5j non-trivial.

7. The class has no user-provided copy constructors,move constructors, copy-assignment
operators, or move-assignment operators:
// Type Is trivial?
struct S6a { }; // yes
struct S6b { S6b() = default;

S6b(const S6b&) = default; }; // yes
struct S6c { S6c() = default;

S6c(const S6c&); }; // no, has user-provided copy ctor
struct S6d { S6d() = default;

S6d(const S6d&) = delete; }; // yes, no user-provided copy ctor
struct S6e { S6e& operator=(S6e&&); }; // no, user-provided move assignment

8. There is at least one nondeleted trivial copy constructor, move constructor, copy-
assignment operator, or move-assignment operator. Each of these operations is trivial
if it is not user-provided and if it invokes only trivial constructors or assignment
operators for each base class and nonstatic data member. Additionally, the presence
of either virtual functions or virtual base classes (items 0 and 1, above) prevent the
copy/move constructors and copy/move-assignment operators from being trivial:
// Type Is trivial?
struct S7a
{

S7a() = default; // trivial default constructor
S7a(const S7a&) = delete; // deleted copy constructor

427

lorihughes
Highlight
[set the whole term in gloss font and static in code font]

lorihughes
Inserted Text
data 

lorihughes
Highlight
[omit gloss font since destructor is in gloss font]

lorihughes
Cross-Out

lorihughes
Inserted Text
1

lorihughes
Cross-Out

lorihughes
Inserted Text
2




