
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 422 — #448

i
i

i
i

i
i

Generalized PODs '11 Chapter 2 Conditionally Safe Features

has been initialized. For example, consider a simple standard-layout class, SS, con-
taining three public data members, of types int, double, and void*, along with some
other similar standard-layout class types, S0, S1, S2, and S3, that are in turn comprised
into a union, U:
struct SS { int i; double d; void* p; };

struct S0 { long i; double d; void* p; }; // 0 member CIMS
struct S1 { int j; float d; void* p; }; // 1 " " w/ all but S0
struct S2 { int j; double e; char* p; }; // 2 " " with SS, S3
struct S3 { int j; double e; void* q; S0 s; }; // 3 " " with SS

union U { SS ss; S0 s0; S1 s1; S2 s2; S3 s3; }; // all standard­layout types

In the example above, the type of the first data member of S0 differs from that of SS
and therefore shares no CIMS with SS or any of the other members of U. The first data
member of S1 matches exactly that of SS (and all of the other members of U except
S0) but differs in the type of its second member; hence, SS and S1 share a CIMS of
length 1: int. The first two data members of S2 exactly match those of SS (but differ
after that), so they share a CIMS of length 2: int, double. Finally, the first three
data members of S3 exactly match those of SS, so they share a CIMS of length 3: int,
double, void*.
If we create an instance of our union U (e.g., u) with ss as the active member and
initialize the three data members of SS, we are able to safely access none, some, or all
of those values via the other members of U depending on the length of their mutual
CIMS:
U u = { 3, 5.5, 0 }; // braced initialization of SS standard­layout member

int i0 = u.s0.i; // Bug, no CIMS with SS

int i1 = u.s1.j; // OK, j member of S1 is part of CIMS with SS.
double d1 = u.s1.d; // Bug, d member of S1 is not part of CIMS with SS.
void* p1 = u.s1.p; // Bug, p " " " " " " " " " "

int i2 = u.s2.j; // OK, j member of S2 is part of CIMS with SS.
double d2 = u.s2.e; // OK, e " " " " " " " " "
void* p2 = u.s2.p; // Bug, p member of S2 is not part of CIMS with SS.

int i3 = u.s3.j; // OK, j member of S3 is part of CIMS with SS.
double d3 = u.s3.e; // OK, e " " " " " " " " "
void* p3 = u.s3.q; // OK, q " " " " " " " " "

According to the definition of standard-layout class types (see Standard-layout types
on page 417, above), at most one class in any class hierarchy is permitted to contain
nonstatic member data; hence, the CIMS is independent of where in an inheritance
hierarchy the CIMS is defined:

422

lorihughes
Cross-Out

lorihughes
Inserted Text
char

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Pencil
[transpose. Set the whole term in gloss font and static in code font.]




