
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 413 — #439

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

struct X { int i, j; double d[2]; }; X x = {}; // OK, X is an aggregate.
class Y { int i; public: Y(); ~Y(); }; Y y = {}; // Error, Y isn't.

A C++03 aggregate is an array, class, struct, or union having no user-declared6 con-
structors, no private or protected nonstatic data members, no base classes, and no
virtual functions:
// Class declaration Is a C++03 aggregate?
class A0 { }; // Yes, empty class is an aggregate.
class A1 { int x; }; // no, private data member
class A2 { protected: int x; }; // no, protected data member
class A3 { public: int x; }; // yes, public data
class A4 { int f(); }; // yes, private nonvirtual function
class A5 { static A1 x; }; // Yes, static members don't matter.
struct A6 { A6() { } }; // no, user-declared default ctor
struct A7 { A7(const A7&) { } }; // no, user-declared copy ctor
struct A8 { A8(int) { } }; // no, user-declared value ctor
struct A9 { ~A9(); }; // Yes, destructor can be declared.
struct A10 { A10& operator=(const A10&); };

// yes, user-declared copy assignment allowed
struct A11 { int* x; }; // Yes, pointers are allowed in aggregates.
struct A12 : A0 { }; // no, base class
struct A13 { virtual void f(); }; // no, virtual function
struct A14 { A1 x; }; // Yes, data members need not be aggregates.
struct A15 { A13 x; }; // Yes, " " " " " "

struct A16 { const int x; }; // yes, but must initialize const values
struct A17 { int& x; }; // yes, " " " references
union A18 { int x; double y; }; // Yes, unions can be aggregates.

As the example types above illustrate, an aggregate may contain arbitrary public data mem-
bers, private nonvirtual functions, and static members of any kind. Although an aggregate
may not declare any constructors, it is permitted to declare a copy-assignment operator
and a destructor. Importantly, an aggregate is permitted to contain elements that are them-
selves not of aggregate type. Hence, an array of any C++ type would itself be considered
an aggregate:
#include <string> // std::string
std::string a[10] = {}; // a is an aggregate.

6The C++03 term user-declared is replaced in C++11 by user-provided because a special member
function that is explicitly declared and immediately defaulted (see Section 1.1.“Defaulted Functions” on
page 33) or deleted (see Section 1.1.“Deleted Functions” on page 53) is considered user-declared and yet
is not user-provided; hence, a class with, e.g., explicitly defaulted constructors can still be an aggregate in
C++11.

413

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




