
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 407 — #433

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

same location in memory, an attempt to access the second data member when the ini-
tialmember sequence is other than an exact match nonetheless has undefined behavior.
Moreover, writing to any part of any other, noncompatible union member, irrespective
of its relative physical position in its POD-struct (e.g., writing to aa.h), renders the
previously active member of the union (e.g., bb) inactive, thereby precluding access to
any members of the original pair of partially compatible POD-structs (e.g., bb and
cc). On most platforms, however, the buggy code in the previous example is likely to
compile and perform as though there was no undefined behavior; see Potential Pitfalls
— Misuse of unions on page 505.

3. Lifetime of an object begins at allocation — Scalar types are trivial types, which
means no code need run to either construct or destroy scalar objects. POD-struct
types, like the scalars they comprise, also are trivial. The lifetime of a POD object
starts when memory is first acquired for it, such as by a variable declaration or a
call to the new operator. However, starting the lifetime of a POD does not guarantee
that it has been initialized. Consider the case of declaring an int as a local variable:
void test2()
{

int x; // x is not initialized, but lifetime begins.
int* p = &x; // We cannot read x but can take its address.
int y = x; // Bug, read of uninitialized x
*p = 5; // We can write to x, thereby initializing it.
int z = x; // Now we can read x.

}

Similarly, the lifetime of a POD object ends when its memory is reclaimed, such as
by going out of scope, or when it is repurposed by constructing a new object in that
memory; the destructor of a POD is always trivial, and nothing will execute when a
POD object is destroyed. Note that explicit invocation of a trivial destructor will
not end the lifetime of an object, including a POD object.3

Although a POD can be declared const or contain a nonstatic const data member,
such a POD cannot exist in an uninitialized state; attempting to create an object
that requires const data member initialization will fail to compile if the initializer is
omitted:
struct S2 // POD type containing two scalar data members
{

const int* p; // Pointers, but not references, can be POD data members.
const int i; // Note that const data members must be initialized.

};

S2 s2a; // Error, uninitialized const data member, s2a.i
S2 s2b = { 0, 5 }; // OK, const data member s2b.i is initialized to 5.

3As of C++20, running the destructor of any object — even a POD — ends its lifetime, and assigning a
value to it after the fact would have undefined behavior; see CWG issue 2256 (smith16b).

407

lorihughes
Pencil
[tranpose. Then set nonstatic data member in gloss font and leave const as is in code font.]




