
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 405 — #431

i
i

i
i

i
i

Section 2.1 C++11 Generalized PODs '11

every POD type in C++ has a corresponding type in C that — at least in practice — is
structurally compatible with it, even if its C rendering lacks certainmember functions, access
controls, empty base classes, and so on that might otherwise pertain in C++; see Use Cases
— Translating a C++-only type to C (standard layout) on page 452.
Being a C++ POD-struct, though almost always an overly strict constraint, is sufficient
to guarantee many other useful properties not generally afforded to other class types. The
details of the minimal requirements needed for any given property to hold are discussed
in subsequent sections; e.g., see Standard-layout types on page 417 and Trivial types on
page 425. Let’s now consider some of the special properties and advantages that all PODs
enjoy.

1. Contiguous storage — All objects of POD type, a.k.a. POD objects, occupy con-
tiguous bytes of storage. The value representation of a POD object is a subset of the
bits in that storage, and the valid values of a POD object are an implementation-
defined set of values that those bits can take on. Consider a POD-struct, S1, con-
taining a char and a short:

struct S1 // POD-struct whose size is typically 4 bytes
{

char a; // always exactly 1 byte
// typically 1 byte of padding for alignment purposes

short b; // at least (and typically exactly) 2 bytes
};

Objects of this POD type are typically stored in exactly 4 contiguous bytes and have
a value representation of 24 noncontiguous bits. The 8 extra padding bits are not part
of the value representation.
Objects with virtual base classes might potentially have not just a noncontiguous value
representation but also a noncontiguous object representation, since the virtual
base subobject might not be adjacent to the rest of the object. This reason is one of
a few that explains why types with virtual base classes are not POD types.

2. Predictable layout — The layout of every POD object is stable and in some impor-
tant ways predictable. For example, the first nonstatic data member (e.g., x) of a
POD-struct (e.g., X) is guaranteed to reside at the same address as does the POD-
struct object (e.g., pso) itself:

struct X { int x; } pso; // POD-struct object
static_assert(static_cast<void*>(&pso) == static_cast<void*>(&pso.x), "");

This property of a POD-struct predates C++03 and is true even in C. Although
base classes are not permitted for C++03 POD types, in C++11 the address of a
POD-struct having one or more base classes is the same as that of its first base class:

405

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




