
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 40 — #66

i
i

i
i

i
i

Defaulted Functions Chapter 1 Safe Features

struct Metrics
{

int d_numRequests; // number of requests to the service
int d_numErrors; // number of error responses

Metrics(int, int); // userprovided value constructor

// Generation of default constructor is suppressed.
};

As illustrated in Appendix — Implicit Generation of Special Member Functions on page 44,
the presence of a user-provided constructor suppressed the implicit generation of the default
constructor. Replacing the default constructor with a seemingly equivalent user-provided
one might appear to work as intended:
struct Metrics
{

int d_numRequests; // number of requests to the service
int d_numErrors; // number of error responses

Metrics(int, int); // userprovided value constructor
Metrics() {} // userprovided default constructor

// Default constructor is userprovided: Metrics is not trivial.
};

The user-provided nature of the default constructor, however, renders the Metrics type
non-trivial, even if the definitions are identical! In contrast, explicitly requesting the default
constructor be generated using = default restores the triviality of the type:
struct Metrics
{

int d_numRequests; // number of requests to the service
int d_numErrors; // number of error responses

Metrics(int, int); // userprovided value constructor
Metrics() = default; // defaulted, trivial default constructor

// Default constructor is defaulted: Metrics is trivial.
};

Physically decoupling the interface from the implementation

Sometimes, especially during large-scale development, avoiding compile-time coupling clients
to the implementations of individual methods offers distinct maintenance advantages.

40

lorihughes
Cross-Out

lorihughes
Inserted Text
though

lorihughes
Cross-Out

lorihughes
Inserted Text
definition is identical to that which was previously generated by the compiler




