
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 39 — #65

i
i

i
i

i
i

Section 1.1 C++11 Defaulted Functions

Note, however, that the compiler does not check the commented code, which is easily suscep-
tible to copy-paste and other errors. By uncommenting the code and defaulting it explicitly
in class scope, we regain the compiler’s syntactic checking of the function signatures with-
out incurring the cost of turning what would have been trivial functions into equivalent
non-trivial ones:
class C3
{

// ...

public:
C3() = default;

// Create an empty object.

C3(const C3& rhs) = default;
// Create an object having the same value as the specified rhs object.

~C3() = default;
// Destroy this object.

C3& operator=(const C3& rhs) = default;
// Assign to this object the value of the specified rhs object.

};

Preserving type triviality

A particular type being trivial can be beneficial. The type is considered trivial if its default
constructor is trivial and it is trivially copyable — i.e., it has no non-trivial copy or
move constructors, no non-trivial copy or move assignment operators, at least one of those
nondeleted, and a trivial destructor. As an example, consider a simple trivial Metrics type
in the code snippet below containing certain collected metrics for our application:
struct Metrics
{

int d_numRequests; // number of requests to the service
int d_numErrors; // number of error responses

// All special member functions are generated implicitly.
};

Now imagine that we would like to add a constructor to this struct to make its use more
convenient:

39

lorihughes
Cross-Out

lorihughes
Inserted Text
, in some cases, improve runtime performance

lorihughes
Cross-Out

lorihughes
Inserted Text
A class




