
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 383 — #409

i
i

i
i

i
i

Section 2.1 C++11 Forwarding References

More generally, note that the && syntax can never imply a forwarding reference for a function
that is not itself a template; see Annoyances — Forwarding references look just like rvalue
references on page 397.

auto&& — a forwarding reference in a nonparameter context

Outside of template function parameters, forwarding references can also appear in the con-
text of variable definitions using the auto keyword (see Section 2.1.“auto Variables” on
page 195) because they too are subject to type deduction:
void f()
{

auto&& i = 0; // i is a forwarding reference because the type of i must
// be deduced from the initialization expression 0.

}

Just like function parameters, auto&& resolves to either an lvalue reference or rvalue reference
depending on the value category of the initialization expression:
void g()
{

int i = 0;
auto&& lv = i; // lv is an int&.

auto&& rv = 0; // rv is an int&&.
}

Similarly to const auto&, the auto&& syntax binds to anything. In the case of auto&&,
however, the reference will be const only if it is initialized with a const object:
void h()
{

int i = 0;
const int ci = 0;

auto&& lv = i; // lv is an int&.
auto&& clv = ci; // clv is a const int&.

}

Just as with function parameters, the original value category of the expression used to
initialize a forwarding reference variable can be propagated during subsequent function
invocation, e.g., using std::forward (see The std::forward utility on page 385):

383

lorihughes
Highlight
transpose




