
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 374 — #400

i
i

i
i

i
i

extern template Chapter 2 Conditionally Safe Features

2. string — In this case, string.h and string.cpp would instead be modified so as to
depend on vector. Clients wanting to use a string would also be forced to depend
physically on vector at compile time.

Another possibility might be to create a third component, called stringvector, that itself
depends on both vector and string. By escalating8 the mutual dependency to a higher
level in the physical hierarchy, we avoid forcing any client to depend on more than what
is actually needed. The practical drawback to this approach is that only those clients that
proactively include the composite stringvector.h header would realize any benefit; fortu-
nately, in this case, there is no one-definition rule (ODR) violation if they don’t.
Finally, complex machinery could be added to both string.h and vector.h to condition-
ally include stringvector.h whenever both of the other headers are included; such heroic
efforts would, nonetheless, involve a cyclic physical dependency among all three of these
components. Circular intercomponent collaborations are best avoided.9

All members of an explicitly defined template class must be valid

In general, when using a class template, only those members that are actually used get
implicitly instantiated. This hallmark allows class templates to provide functionality for
parameter types having certain capabilities, e.g., default constructible, while also provid-
ing partial support for types lacking those same capabilities. When providing an explicit-
instantiation definition, however, all members of a class template are instantiated.
Consider a simple class template having a data member that can be either default-
initialized via the template’s default constructor or initialized with an instance of the
member’s type supplied at construction:
template <typename T>
class W
{

T d_t; // a data member of type T

public:
W() : d_t() {}

// Create an instance of W with a default-constructed T member.

W(const T& t) : d_t(t) {}
// Create an instance of W with a copy of the specified t.

void doStuff() { /* do stuff */ }
};

This class template can be used successfully with a type, such as U in the following code
snippet, that is not default constructible:

8lakos20, section 3.5.2, “Escalation,” pp. 604–614
9lakos20, section 3.4, “Avoiding Cyclic Link-Time Dependencies,” pp. 592–601

374

lorihughes
Highlight
transpose




