
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 373 — #399

i
i

i
i

i
i

Section 2.1 C++11 extern template

Accidentally making matters worse

When making the decision to explicitly instantiate common specializations of popular tem-
plates within some designated object file, it is important to consider that not all programs
necessarily need every (or even any) such instantiation. Classes that have many member
functions but typically use only a few require special attention.
For such classes, it might be beneficial to explicitly instantiate individual member functions
instead of the entire class template. However, selecting which member functions to explic-
itly instantiate and with which template arguments they should be instantiated without
carefully measuring the effect on the overall object size might result in not only overall
pessimization, but also to an unnecessary maintenance burden. Finally, remember that one
might need to explicitly tell the linker to strip unused sections resulting, for example, from
forced instantiation of common template specializations, to avoid inadvertently bloating
executables, which could adversely affect load times.

Annoyances

No good place to put definitions for unrelated classes

When we consider the implications of physical dependency,5,6 determining in which
component to deposit the specialized definitions can be problematic. For example, consider a
codebase implementing a core library that provides both a nontemplated String class and
a Vector container class template. These fundamentally unrelated entities would ideally live
in separate physical components (i.e., .h/.cpp pairs), neither of which depends physically
on the other. That is, an application using just one of these components could be compiled,
linked, tested, and deployed entirely independently of the other. Now, consider a large
codebase that makes heavy use of Vector<String>: In what component should the object-
code-level definitions for the Vector<String> specialization reside?7 There are two obvious
alternatives.

1. vector— In this case, vector.h would hold extern template class Vector<String>;
— the explicit-instantiation declaration. vector.cpp would hold
template class Vector<String>; — the explicit-instantiation definition. With this
approach, we would create a physical dependency of the vector component on string.
Any client program wanting to use a Vector would also depend on string regardless
of whether it was needed.

5See lakos96.
6See lakos20.
7Note that the problem of determining in which component to instantiate the object-level implementation

of a template for a user-defined type is similar to that of specializing an arbitrary user-defined trait for a
user-defined type.

373

lorihughes
Cross-Out

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes




