
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 344 — #370

i
i

i
i

i
i

enum class Chapter 2 Conditionally Safe Features

e_OCT = (10 << 4) + 0x1,
e_NOV = (11 << 4) + 0x0,
e_DEC = (12 << 4) + 0x1

};

bool hasThirtyOneDays(MonthOfYear month)
{

return static_cast<std::underlying_type<MonthOfYear>::type>(month) & 0x1;
}

In the example above, we are using a new cross-cutting feature of all enumerated types that
allows the client defining the type to specify its underlying type precisely. In this case, we
have chosen an unsigned char to maximize the number of flag bits while keeping the overall
size to a single byte. Three bits remain available. Had we needed more flag bits, we could
have just as easily used a larger underlying type, such as unsigned short; see Section 2.1.
“Underlying Type ’11” on page 829.
In case enums are used for encoding purposes, the public clients are not intended to make
use of the cardinal values; hence, clients are well advised to treat them as implementation
details, potentially subject to change without notice. Representing this enumeration using
the modern enum class, instead of an explicitly scoped classic enum, deters clients from
making any use (apart from same-type comparisons) of the cardinal values assigned to
the enumerators. Notice that implementors of the hasThirtyOneDays function will require a
verbose but efficient static_cast to resolve the cardinal value of the enumerator and thus
make the requested determination as efficiently as possible.

Potential Pitfalls

Strong typing of an enum class can be counterproductive

The additive value in using a scoped enumeration is governed solely by whether the stronger
typing of its enumerators, not the implicit scoping, would be beneficial in typical antici-
pated usage. If the expectation is that the client will never need to know the specific values
of the enumerators, then use of the modern enum class is often just what’s needed. But
if the cardinal values themselves are ever needed during typical use, extracting them will
require the client to perform an explicit cast. Beyond mere inconvenience, encouraging clients
to use casts invites defects.
Suppose, for example, we have a function, setPort, from an external library that takes an
integer port number:
int setPort(int portNumber);

// Set the current port; return 0 on success and a nonzero value otherwise.

Suppose further that we have used the modern enum class feature to implement an enu-
meration, SysPort, that identifies well-known ports on our system:

344

lorihughes
Cross-Out

lorihughes
Inserted Text
e




