
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 310 — #336

i
i

i
i

i
i

constexpr Variables Chapter 2 Conditionally Safe Features

int hoursToSeconds(int hours)
// ...

{
return hours * TimeRatios4::k_SECONDS_PER_HOUR;

}

long long hoursToNanos(int hours)
// Return the number of nanoseconds in the specified hours. The behavior
// is undefined unless the result can be represented as a long.

{
return hours * TimeRatios4::k_NANOS_PER_HOUR;

}

In the example above, we’ve rendered the constexpr variables as static members of a
struct rather than placing them at namespace scope primarily to show that, from a user
perspective, the two are syntactically indistinguishable, the substantive difference here being
that a client would be prevented from unilaterally adding logical content to the “namespace”
of a TimeRatio struct.5

Nonintegral symbolic numeric constants

Not all symbolic numeric constants that are needed at compile time are necessarily integral.
Consider, for example, the mathematical constants pi and e, which are typically represented
using a floating-point type, such as double or long double.
The classical solution to avoid encoding this type of constant value as a magic number is to
instead use a macro, such as is done in the math.h header on most operating systems:
#define M_E 2.71828182845904523536 /* e */
#define M_PI 3.14159265358979323846 /* pi */

double circumferenceOfCircle(double radius)
{

return 2 * M_PI * radius;
}

While this approach can be effective, it comes with all the well-known downsides of using
the C preprocessor, such as potential name collisions. Furthermore, since these constants
are not a part of the C or C++ Standard, some platforms do not provide them at all or
require additional preprocessor definitions prior to including math.h to provide them.
A safer and far less error-prone approach is to instead use a constexpr variable for this
form of nonintegral constant. Note that, while macros for mathematical constants in math.h
are defined with sufficiently large precision to be able to initialize variables of possibly

5lakos20, section 2.4.9, pp. 312–321, specifically Figure 2-23

310

lorihughes
Inserted Text
 long

lorihughes
Sticky Note
Marked set by lorihughes




