
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 307 — #333

i
i

i
i

i
i

Section 2.1 C++11 constexpr Variables

int yB0 = squareB(1 << 15); // OK
const int yB1 = squareB(1 << 15); // OK

constexpr int yB2 = squareB(1 << 15); // OK

int zC0 = squareB(1 << 16); // Bug, zC0 is likely 0.
const int zC1 = squareB(1 << 16); // Bug, zC1 " " "

constexpr int zC2 = squareB(1 << 16); // Error, int overflow detected!

The compiler must evaluate the squareB function in the example above at compile time when
it is used to initialize a constexpr variable and, consequently, report any UB that would arise
during such evaluation as an error. Such is not the case for initialization of nonconstexpr
variables even if they are const. In such cases, the initialization must happen as if it were
evaluated at run time and the compiler might choose to do so. Therefore, when initializing
a nonconstexpr variable of an integral type, the presence of UB will determine whether the
variable will be a compile-time constant but will not lead to a compilation error.

Internal linkage

When a variable at file or namespace scope is either const or constexpr and nothing
explicitly gives it external linkage (e.g., by being marked extern), it will have internal
linkage, meaning that each translation unit will have its own copy of the variable.3

Oftentimes, only the values of such variables are relevant: Their initializers are seen, they are
used at compile time, and there is no effect if different translation units use different objects
having the same name and a different value. After compile-time evaluation is completed,
the variables themselves will no longer be needed, and no actual address will be allocated
for them at run time. Only in cases where the address of the variable is used will the effects
of internal linkage be observable (and can lead to ODR violations).
Notably, static data members have external linkage except when inside an unnamed
namespace. Therefore, if they are used in a way that requires they have an address allo-
cated at run time, then a definition needs to be provided for them outside of their class
irrespective of whether they are constexpr; see Annoyances — static data members require
external definitions on page 314.

Use Cases

Alternative to enumerated compile-time integral constants

It is not uncommon to want to express specific integral constants at compile time — e.g.,
for precomputed operands to be used in algorithms, mathematical constants, configuration
variables, or any number of other reasons. A naive, brute-force approach might be to hard-
code the constants where they are used:

3In C++17, all constexpr variables are instead automatically inline as well, guaranteeing that there is
only one instance in a program.

307

lorihughes
Highlight
remove code font




