
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 28 — #54

i
i

i
i

i
i

decltype Chapter 1 Safe Features

without updating the type of the iteration variable i in lockstep, the loop might silently1

become infinite.2

Had decltype(packet.checksumLength()) been used to express the type of i, the types
would have remained consistent, and the ensuing defect would naturally have been avoided:
// ...
for (decltype(data.checksumLength()) i = 0; i < data.checksumLength(); ++i)
// ...

Creating an auxiliary variable of generic type

Consider the task of implementing a generic loggedSum function template that returns the
sum of two arbitrary objects, a and b, after logging both the operands and the result value,
e.g., for debugging or monitoring purposes. To avoid computing the possibly expensive sum
twice, we decide to create an auxiliary function-scope variable, result. Since the type of
the sum depends on both a and b, we can use decltype(a + b) to infer the type for
both the trailing return type of the function (see Section 1.1.“Trailing Return” on page 124)
and the auxiliary variable:
template <typename A, typename B>
auto loggedSum(const A& a, const B& b)

> decltype(a + b) // (1) exploiting trailing return types
{

decltype(a + b) result = a + b; // (2) auxiliary generic variable
LOG_TRACE << a << " + " << b << " = " << result;
return result;

}

Using decltype(a + b) as a return type is significantly different from relying on auto-
matic return-type deduction; see Section 2.1.“auto Variables” on page 195. Note that
this particular use involves significant repetition of the expression a+b. See Annoyances —
Mechanical repetition of expressions might be required on page 31 for a discussion of ways
in which such repetition might be avoided.

Determining the validity of a generic expression

In the context of generic-library development, decltype can be used in conjunction with
SFINAE (“Substitution Failure Is Not An Error”) to validate an expression involving a
template parameter.

1As of this writing, neither GCC 11.2 (c. 2021) nor Clang 12.0.0 (c. 2021) provide a warning (using
Wall, Wextra, and Wpedantic) for the comparison between std::uint8_t and std::uint16_t — even if (1)
the value returned by checksumLength does not fit in a 8-bit integer, and (2) the body of the function is
visible to the compiler. Decorating checksumLength with constexpr causes clang++ to issue a warning, which
is clearly not a general solution.

2The loop variable is promoted to an unsigned int for comparison purposes but wraps to 0 whenever its
value prior to being incremented is 255.

28

lorihughes
Cross-Out

lorihughes
Inserted Text
Return

lorihughes
Cross-Out

lorihughes
Inserted Text
1182




