
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 274 — #300

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

defined, defaulted, or deleted, (b) all nonstatic data members have trivial default con-
structors and no default member initializers, and (c) all base classes are nonvirtual
and have trivial default constructors. Hence, it is possible to value-initialize a type
that has an explicitly defaulted but not explicitly constexpr default constructor:
struct S1 // example of a nonconstexpr trivial default constructor
{

int d_i; // not initialized by S1()
S1() = default; // trivial, nonconstexpr

};
static_assert(S1().d_i == 0, ""); // OK, value initialization
static_assert(S1{}.d_i == 0, ""); // OK, value initialization

Aggregate initialization might produce the even more surprising effect of successful
initialization even when matching constructors are deleted (see Section 1.1.“Deleted
Functions” on page 53), including a deleted default constructor7:
struct S2 // a type having a non-trivial default constructor
{

constexpr S2() { } // non-trivial, constexpr
};

struct S3 // example of an aggregate having deleted constructors
{

int d_i; // not initialized
S2 d_s2; // has non-trivial constructor

S3() = delete; // non-trivial, nonconstexpr
S3(int a) = delete; // nonconstexpr

};
static_assert(S3().d_i == 0, ""); // Error, invokes deleted constructor
static_assert(S3{}.d_i == 0, ""); // OK, aggregate initialization
static_assert(S3{7}.d_i == 7, ""); // OK, aggregate initialization

Notice that failing to use braced initialization results in value initialization, rather
than aggregate initialization, and therefore attempts to invoke the deleted default
constructor of S3.

7. For a union, exactly one of its data members must be initialized with a constant
expression via (1) a default member initializer (see Section 2.1.“Default Member Init”
on page 318), (2) a constexpr constructor, or (3) aggregate initialization:
// unions having no explicit constructors
union U0 { bool b; char c; }; // OK, neither member initialized

7Since C++20, a type having any user-declared constructors, which includes defaulted and deleted
constructors, is no longer considered an aggregate and thus aggregate initialization does not apply to such
types.

274

lorihughes
Highlight
[set the whole term in gloss font and static in code font] 




