
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 265 — #291

i
i

i
i

i
i

Section 2.1 C++11 constexpr Functions

compile time (e.g., the return statement in main), there is no requirement to have seen the
body. In this case, f9 was not defined anywhere within the translation unit (TU). Just as
with any other inline function whose definition is never seen, many popular compilers will
warn if they see any expressions that might invoke such a function, but it is not ill formed
because the definition could, by design, reside in some other TU (see also Section 2.1.
“extern template” on page 353).
However, when a constexpr function is evaluated to determine the value of a constant
expression, its body and anything upon which its body depends must have already been
seen; notice that we didn’t say “appears as part of a constant expression” but instead said
“is evaluated to determine the value of a constant expression.”
We can have something that is not itself a constant expression appear as a part of a constant
expression provided that it never actually gets evaluated at compile time:
static_assert(true ? true : throw, ""); // OK
static_assert(true ? throw : true, ""); // Error, throw not constexpr

extern bool x;
static_assert((true, x), ""); // Error, x not constexpr
static_assert((x, true), ""); // Error, " " "

static_assert(true || x, ""); // OK
static_assert(x || true, ""); // Error, x not constexpr

Note that the comma (,) sequencing operator incurs evaluation of both of its arguments,
whereas the logical-or (||) operator requires only that its two arguments be convertible to
bool, where actual evaluation of the second argument might be short circuited.

The type system and function pointers

Similarly to the inline keyword, marking a function constexpr does not affect its type;
hence, it is not possible to have, say, two overloads of a function that differ only on whether
they are constexpr or to define a pointer to exclusively constexpr functions:
constexpr int f(int) { return 0; } // OK
int f(int) { return 0; } // Error, int f(int) is now multiply defined.

typedef constexpr int(*MyFnPtr)(int);
// Error, constexpr cannot appear in a typedef declaration.

void g(constexpr int(*MyFnPtr)(int));
// Error, a parameter cannot be declared constexpr.

Just as with objects of other types, the value of a function pointer can be read as part of
evaluating a constant expression only if that pointer is a compile-time constant. Further-
more, a function can be invoked at compile time via a function pointer only if the pointer
is a compile-time constant and the function is declared constexpr:

265

lorihughes
Highlight
remove code font

lorihughes
Sticky Note
Marked set by lorihughes

