
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 262 — #288

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

static_assert(g(mb), ""); // Error, mb not usable in a constant expression
static_assert(g(false), ""); // OK
static_assert(g(true), ""); // OK, j is usable in a constant expression.

int xf = f(mb); // OK, runtime evaluation of f
int xg = g(mb); // OK, runtime evaluation of g

In the example above, f can sometimes be used as part of a constant expression but only
if its argument is itself a constant expression and b evaluates to false, thereby avoiding
use of the global variable i, which is not a compile-time constant. Function g, on the other
hand, requires only that its argument be a constant expression for it to always be usable
as part of a constant expression. If there is not at least one set of compile-time constant
argument values that would be usable at compile time, then it is ill formed, no diagnostic
required (IFNDR):
constexpr int h1(bool b) { return f(b); }

// OK, there is a value of b for which h1 can be evaluated at compile time.

constexpr int h2() { return f(true); }
// There's no way to invoke h2 so that it can be evaluated at compile time.
// (This function is ill formed, no diagnostic required.)

Here h1 is well formed since it can be evaluated at compile time when the value of b is
false; h2, on the other hand, is ill formed because it can never be evaluated at compile
time. A sophisticated analysis would, however, be required to establish such a proof, and
modern compilers issue a diagnostic only for reasonably simple cases.
Guaranteeing compile-time evaluation for certain arguments is an essential part of a func-
tion’s contract. Declaring a function to be constexpr might lead prospective clients to
conclude that such a function can be evaluated at compile time with any compile-time-
constant arguments. Such assumptions can prove erroneous as evidenced by h1 in the
example above. Subsequently guaranteeing compile-time evaluation for a wider set of inputs
than was originally promised is typically not a problematic change. By contrast, however,
providing compile-time evaluation for a narrower set of inputs than was originally available,
even if not explicitly promised, can lead to compilation errors for those clients that chose to
rely on compile-time usage of the function. It is therefore incumbent on library authors
to consider carefully whether to mark a function constexpr and for which arguments to
support compile-time evaluation, since improving the implementation of the function while
respecting the restrictions imposed by constexpr might prove insurmountable, especially
with the limitations imposed by C++11; see Potential Pitfalls — Prematurely committing
to constexpr on page 297.

Inlining and definition visibility

A function that is declared constexpr is (1) implicitly declared inline and (2) auto-
matically eligible for compile-time evaluation. Note that adding the inline specifier to a
function that is already declared constexpr has no effect:

262

lorihughes
Highlight
retain code font

lorihughes
Highlight
remove code font




