
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 258 — #284

i
i

i
i

i
i

constexpr Functions Chapter 2 Conditionally Safe Features

Employing this cumbersome work-around leads to code that is difficult both to write and to
read and is also non-trivial to compile, often resulting in long compile times. What’s more,
a separate implementation will be needed for inputs whose values are not compile-time
constants.
C++11 introduces a new keyword, constexpr, that gives users enhanced control over
compile-time evaluation. Prepending a function declaration with the constexpr keyword
informs both the compiler and prospective users that the function is eligible for compile-time
evaluation and, under the right circumstances, can and will be evaluated at compile time to
determine the value of a constant expression:
constexpr int factorial(int n) // can be evaluated in a constant expression
{

return n == 0 ? 1 : n * factorial(n - 1); // single return statement
}

In C++11, the body of a constexpr function is effectively restricted to a single return
statement, and any other language construct, such as if statements, loops, variable dec-
larations, and so on, are forbidden; see Restrictions on constexpr function bodies (C++11
only) on page 268. These seemingly overly strict limitations, although much preferred to
the Factorial metafunction (e.g., in the code example above), might make optimizing a
function’s runtime performance infeasible; see Potential Pitfalls — Prematurely committing
to constexpr on page 297. As of C++14, however, many of these restrictions were lifted,
though some runtime tools remain unavailable during compile-time evaluation. At the time
constexpr was added to the language, it was a feature under development, and it still is;
see Section 2.2.“constexpr Functions ’14” on page 959.
Note that semantic validation of constexpr functions occurs only at the point of definition.
It is therefore possible to declare a member or free function to be constexpr for which
there can be no valid definition — e.g., constexpr void f(); — as the return type of
a constexpr function’s definition must satisfy certain requirements, including (in C++11
only) that its return type must not be void; see Restrictions on constexpr function bodies
(C++11 only) on page 268.
Simply declaring a function to be constexpr does not automatically mean that the func-
tion will necessarily be evaluated at compile time. A constexpr function is guaranteed to
be evaluated at compile time only when invoked in a context where a constant expres-
sion is required.1 Examples of such contexts include the value of a non-type template
parameter, array bounds, the first argument to a static_assert, case labels in switch
statements, or the initializer for a constexpr variable; see Section 2.1.“constexpr Variables”
on page 302. If one attempts to invoke a constexpr function in a context where a constant
expression is required with an argument that is not a constant expression, the compiler will
report an error:

1C++20 formalized this notion with the term manifestly constant evaluated to capture all places
where the value of an expression must be determined at compile time. This new term coalesces descriptions
in several places in the Standard where this concept had previously been used without being given a common
name.

258

lorihughes
Cross-Out
[delete hyphen and close up]




