“LakosRomeo-EMCS-FinalDesign” — 2022/12/1 — 12:31 — page 254 — #280

Braced Init Chapter 2 Conditionally Safe Features

#include <iostream> // std::cout
#include <initializer_list> // std::initializer_ list

struct S

{
s() {3
S(std::initializer_list<S>) { std::cout << "ipit list\n"; }
S(const S&) { std::cout << "copy\n"; }

}
int main()
{
S s;
auto s2{s}; // std::initializer_list<S> constructor is called after
// deduction. (Note: s2 is deduced to be of type S.)
}

The program above prints copy followed by init list because (1) the type of s2 is deduced
to be S per auto type deduction rules, (2) overload resolution selects the initializer_list
constructor as the best match due to use of a braced initializer, and (3) the single element
of the initializer_list is copy-initialized from s. If direct or copy initialization were used
for initializing s2, the copy constructor would be selected instead.

Compound assighment but not arithmetic operators accept braced lists

Braced initializers can be used to provide arguments to the assignment operator and
additionally to compound assignment operators such as +=, where they are treated as calls
to the overloaded operator function for class types, or as += T{value} for a scalar type
T.10 Note that assigning to scalars supports braced lists of no more than a single element
and does not support compound assignment for pointer types, since the braced lists are
converted to a pointer type, which cannot appear on the right-hand side of a compound
assignment operator.

While the intent of compounded assignment is to be semantically equivalent to the expres-
sion a=a+ b (or * b, or - b, and so on), braced lists cannot be used in regular arithmetic
expressions since the grammar does not support braced lists as arbitrary expressions:

10 Although valid, the two x += {3} and x *= {3} lines in the example compile successfully on Clang but
not on any version of GCC or MSVC at the time of writing. The C++11 Standard currently states:

A braced-init-list may appear on the right-hand side of

— an assignment to a scalar, in which case the initializer list shall have at most a single
element. The meaning of x={v}, where T is the scalar type of the expression x, is that
of x=T{v} except that no narrowing conversion (8.5.4) is allowed. The meaning of x={}
is x=T{}.

(isolla, paragraph 9, section 5.17, “Assignment and Compound Assignment Operators,” p. 126). There is
currently a defect report to clarify the Standard and explicitly state that this rule also applies to compound
assignments; see CWG issue 1542 (miller12b) and miller21.

254



