
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 216 — #242

i
i

i
i

i
i

Braced Init Chapter 2 Conditionally Safe Features

struct S
{

explicit S(int); // explicit value constructor (from int)
S(double); // nonexplicit value constructor (from double)
S(const S&); // nonexplicit copy constructor

};

S s1(1); // direct init of s1: calls S(int); copy constructor is not called
S s2(1.0); // direct init of s2: calls S(double); " " " " "
S s3 = 1; // copy init of s3: calls S(double); copy constructor might be called
S s4 = 1.0; // copy init of s4: calls S(double); " " " " "

Exclusion of explicit conversions for copy initializationmanifests in initialization of s1 calling
a different constructor than s3 in the example above. What’s more, copy initialization is
defined as if a temporary object is constructed; the compiler is permitted to elide this
temporary and, in practice, typically does. Note, however, that copy initialization is not
permitted unless there is an accessible copy or move constructor, even if the temporary
would have been elided.1 If the move constructor for a user-defined type is declared and not
accessible, copy initialization is ill formed; see Section 2.1.“Rvalue References” on page 710
and Section 1.1.“Deleted Functions” on page 53. Note that function arguments and return
values are initialized using copy initialization.
Reference types are also initialized by copy and direct initialization, binding the declared ref-
erence to an object or function. For an lvalue reference to a non-const-qualified type,
the referenced type must match exactly or be derived from that type. However, if binding an
rvalue reference or an lvalue reference to a const-qualified type, the compiler copy-initializes
a temporary object of the target type of the reference and binds the reference to that tem-
porary; in such cases, the lifetime of the temporary object is extended to the end of the
lifetime of the reference:
void test1()
{

int i = 0; // OK, copy initialization of int
int& x(i); // OK, direct initialization of reference
const long& y = x; // OK, y binds to a temporary whose lifetime it extends.
long& z = x; // Error, incompatible types

}

The second dual category of initialization comprises default initialization and value ini-
tialization. Both default and value initialization pertain to situations in which no initializer
is supplied, and these distinct types of initialization are distinguished by the presence or
absence of parentheses, where the absence of parentheses indicates default initialization and
the presence indicates value initialization. Note that in simple contexts such as declaring a
variable, empty parentheses might also indicate a function declaration instead (see Use Cases
— Avoiding the most vexing parse on page 237):

1In C++17, guaranteed copy elision omits the temporary object construction and obviates the need
for an accessible copy or move constructor.

216

lorihughes
Cross-Out

lorihughes
Inserted Text
char

lorihughes
Cross-Out

lorihughes
Inserted Text
char

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes




