
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 212 — #238

i
i

i
i

i
i

auto Variables Chapter 2 Conditionally Safe Features

With that said, using auto to deduce references to built-in arrays is straightforward:
int data[] = {1, 2};

auto& arr6 = data; // int (&) [2]
const auto& arr7 = BuiltInArray<int, 2>{1, 2}; // const int (&) [2]

auto&& arr8 = BuiltInArray<int, 2>{1, 2}; // int (&&)[2]

Note that the arr7 and arr8 references in the code snippet immediately above extend the
lifetime of the temporary arrays that they bind to, so subscripting them does not have
the undefined behavior that subscripting arr5 in the previous code snippet has.

Annoyances

auto is disallowed for nonstatic data members

Despite C++11 allowing nonstatic data members to be initialized within class definitions,
auto cannot be used to declare them:
class C
{

auto d_i = 1; // Error, nonstatic data member is declared with auto.
};

Not all template argument deduction constructs are allowed for auto

Despite auto type deduction largely following the template argument deduction rules, cer-
tain constructs that are allowed for templates are not allowed for auto. For example, when
deducing a pointer-to-data-member type, templates allow for deducing both the data mem-
ber type and the class type, whereas auto can deduce only the former:
struct Node
{

int d_data;
Node* d_next;

};

template <typename TYPE>
void deduceMemberTypeFn(TYPE Node::*);

void testDeduceMemberType()
{

deduceMemberTypeFn (&Node::d_data); // OK, int Node::*
auto Node::* deduceMemberTypeVar = &Node::d_data; // OK, " "

}

template <typename TYPE>
void deduceClassTypeFn(int TYPE::*);

212

lorihughes
Highlight
[set the whole term in gloss font and static in code font]




