
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 194 — #220

i
i

i
i

i
i

alignof Chapter 2 Conditionally Safe Features

auto printTypeInformation = [](auto object)
{

std::cout << " size: " << sizeof(object) << '\n'
<< "alignment: " << alignof(decltype(object)) << '\n';

};

Because there is no explicit type available within the body of the printTypeInformation
lambda,7 a programmer aiming to remain entirely within the C++ Standard8 is forced to
use the decltype construct explicitly to first obtain the type of object before passing it on
to alignof.

See Also

• “decltype” (§1.1, p. 25) explains how decltype helps work around alignof’s limita-
tion of accepting only a type, not an expression (see Annoyances — alignof is defined
only on types on page 193).

• “alignas” (§2.1, p. 168) discusses how alignas can be used to provide an artificially
stricter alignment, e.g., more than natural alignment.

7In C++20, referring to the type of a generic lambda parameter explicitly is possible, due to the addition
to lambdas of some familiar template syntax:

auto printTypeInformation = []<typename T>(T object)
{

std::cout << " size: " << sizeof(T) << '\n'
<< "alignment: " << alignof(T) << '\n';

};

8Note that alignof(object) will work on every major compiler — GCC 11.2 (c. 2021), Clang 12.0.1
(c. 2021), and MSVC 19.29 (c. 2021) — as a nonstandard extension.

194

lorihughes
Inserted Text
's




