“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 188 — #214

alignof Chapter 2 Conditionally Safe Features

#include <cassert> // standard C assert macro

#include <string> // std::string

#include <my_any.h> // MyAny

void f()

{
MyAny obj = 10; // can be initialized with values of any type
assert(obj.as<int>() == 10); // Inner data can be retrieved at run time.
obj = std::string{"hello"}; // can be reassigned from a value of any type
assert(obj.as<std::string>() == "hello");

}

A straightforward implementation of MyAny would be to allocate an appropriately sized block
of dynamic memory each time a value of a new type is assigned. Such a naive implementation
would force memory allocations even though the vast majority of values assigned in practice
are small (e.g., fundamental types), most of which would fit within the space that would
otherwise be occupied by just the pointer needed to refer to dynamic memory. As a practical
optimization, we might instead consider reserving a small buffer within the footprint of
the MyAny object to hold the value provided (1) it will fit and (2) the buffer is sufficiently
aligned. The natural implementation of this type, typically having a union of a char array
and a char pointer as a data member, will naturally result in the alignment requirement of
at least that of the char*, e.g., 4 on a 32-bit platform and 8 on a 64-bit one:

// my_any.h:

class MyAny // aestemplate—eclass

{
union {
char* d_buf_p; // pointer to dynamic memory if needed
char d_buffer[39]; // small buffer
}; // Size of union is 39; alignment of union is alignof(char*).
char d_onHeapFlag; // Boolean (discriminator) for union (above)
public:
template <typename T>
MyAny(const T& X); // member template constructor

template <typename T>
MyAny& operator=(const T& rhs); // member template assignment operator

188


lorihughes
Cross-Out

lorihughes
Inserted Text
not a template




