“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 187 — #213

Section 2.1 C++11 alignof
double d_d; // size = 8; alignment = 8
int d_i; // size = 4; alignment = 4
char d_c; // size = 1; alignment = 1
}; // size = 16; alignment = 8

Both alignof(Wasteful) and alignof(Optimal) are 8 on our platform, but
sizeof (Wasteful) is 24, whereas sizeof(Optimal) is only 16. Even though these two
structs contain the very same data members, the individual alignment requirements of
these members forces the compiler to insert more total padding between the data members
in Wasteful than is necessary in Optimal:

struct wasteful

{
char d_c; // size = 1; alignment = 1
char padding_0[7]; // size = 7
double d_d; // size = 8; alignment = 8
int d_i; // size = 4; alignment = 4
char padding_1[4]; // size = 4

}; // size = 24; alignment = 8

struct Optimal

{
double d_d; // size = 8; alignment = 8
int d_i; // size = 4; alignment = 4
char d_c; // size = 1; alignment = 1
char padding_0[3]; // size = 3

}; // size = 16; alignment = 8

Determining if a given buffer is sufficiently aligned

The alignof operator can be used to determine if a given, e.g., char, buffer is suitably
aligned for storing an object of arbitrary type. As an example, consider the task of creating
a value-semantic class, MyAny, that represents an object of arbitrary type?:

2The C++17 Standard Library provides the nontemplate class std: :any, which is a type-safe container
for single values of any regular type. The implementation strategies surrounding alignment for std: :any in
both libstdc++ and libc++ closely mirror those used to implement the simplified MyAny class presented here.
Note that std::any also records the current typeid on construction or assignment, which can be queried
with the type member function to determine, at run time, whether a specified type is currently the active
one:

#include <any> // std::any
void f(const std::any& object)
{
if (object.type() == typeid(int)) { /*...*/ }
}

187


lorihughes
Cross-Out

lorihughes
Cross-Out




