
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 168 — #194

i
i

i
i

i
i

alignas Chapter 2 Conditionally Safe Features

The alignas Specifier

The keyword alignas can be used in the declaration of a class type, a data member,
an enumeration, or a variable to strengthen its alignment.

Description

Each object type in C++ has an alignment requirement that restricts the addresses at
which an object of that type is permitted to reside within the virtual-memory-address
space. The alignment requirement is imposed by the object type on all objects of that type.
The alignas specifier provides a means of specifying a stricter alignment requirement than
dictated by the type itself for a particular variable of the type or an individual data member
of a user-defined type (UDT). The alignas specifier can also be applied to a UDT itself,
but see Potential Pitfalls — Applying alignas to a type might be misleading on page 177.

Supported alignments

An alignment value is an integral of type std::size_t that represents the number of bytes
between the addresses at which a given object may be allocated. In practice, the alignment
value will always evenly divide the numerical value of the address of any object of that
type. All alignment values in C++ are non-negative powers of two and are divided into
two categories depending on whether they are larger than the alignment requirement of the
std::max_align_t type. The std::max_align_t type’s alignment requirement is at least
as strict as that of every scalar type. An alignment value of less than or equal to the
alignment requirement of std::max_align_t is a fundamental alignment; otherwise, it
is an extended alignment. The std::max_align_t type is typically an alias to the largest
scalar type, which is long double on most platforms, and its alignment requirement is
usually 8 or 16.
Fundamental alignments are required to be supported in all contexts, i.e., for variables with
automatic, static, and dynamic storage durations as well as for nonstatic data members
of a class and for function arguments. While all fundamental and pointer types have
fundamental alignments, their specific values are implementation defined and might
differ between platforms. For example, the alignment requirement of type long might be 4
on MSVC and 8 on GCC.

168

lorihughes
Highlight
[set in code font]




