
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 138 — #164

i
i

i
i

i
i

Aggregate Init '14 Chapter 1 Safe Features

Aggregates Having Default Member Initializers

C++14 enables the use of aggregate initialization with classes employing default member
initializers.

Description

Prior to C++14, classes that used default member initializers, i.e., initializers that appear
directly within the scope of the class (see Section 2.1.“Default Member Init” on page 318),
were not considered aggregate types:
struct S // aggregate type in C++14 but not C++11
{

int i;
bool b = false; // uses default member initializer

};

struct A // aggregate type in C++11 and C++14
{

int i;
bool b; // does not use default member initializer

};

Because A but not S is considered an aggregate in C++11, instances of A can be created via
aggregate initialization, whereas instances of S cannot:
A a={100, true}; // OK, in both C++11 and C++14
S s={100, true}; // Error, in C++11; OK, in C++14

Note that since C++11, direct list initialization can be used to perform aggregate initial-
ization; see Section 2.1.“Braced Init” on page 215:
A a{100, true}; // OK in both C++11 and C++14 but not in C++03

As of C++14, the requirements for a type to be categorized as an aggregate are relaxed,
allowing classes employing default member initializers to be considered as such; hence, both
A and S are considered aggregates in C++14 and eligible for aggregate initialization:
void f()
{

S s0{100, true}; // OK in C++14 but not in C++11
assert(s0.i == 100); // set via explicit aggregate initialization
assert(s0.b == true); // set via explicit aggregate initialization

S s1{456}; // OK in C++14 but not in C++11
assert(s1.i == 456); // set via explicit aggregate initialization
assert(s1.b == false); // set via default member initializer

}

138

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Cross-Out

lorihughes
Inserted Text
In

lorihughes
Cross-Out

lorihughes
Inserted Text
11




