
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 135 — #161

i
i

i
i

i
i

Section 1.1 C++11 using Aliases

typedef void(*CompletionCallback)(void* userData);

Developers coming from a background other than C or C++03 might find the above decla-
ration hard to parse since the name of the alias, CompletionCallback, is embedded in the
function pointer type. Replacing typedef with using results in a simpler, more consistent
formulation of the same alias:
using CompletionCallback = void(*)(void* userData);

The CompletionCallback alias declaration above reads almost completely left-to-right,
and the name of the alias is clearly specified after the using keyword. To make the
CompletionCallback alias read left-to-right, a trailing return (see Section 1.1.“Trailing
Return” on page 124) can be used:

using CompletionCallback = auto(*)(void* userData) > void;

The alias declaration above can be read as, “CompletionCallback is an alias for a pointer
to a function taking a void* parameter named userData and returning void.”

Binding arguments to template parameters

An alias template can be used to bind one or more template parameters of, say, a commonly
used class template, while leaving the other parameters open to variation. Suppose, for
example, we have a class, UserData, that contains several distinct instances of std::map,
each having the same key type, UserId, but with different payloads:
class UserData // class having excessive code repetition (BAD IDEA)
{
private:

std::map<UserId, Message> d_messages;
std::map<UserId, Photos> d_photos;
std::map<UserId, Article> d_articles;
std::map<UserId, std::set<UserId>> d_friends;

};

The example above, though clear and regular, involves significant repetition, making it more
difficult to maintain should we later opt to change data structures. If we were to instead
use an alias template to bind the UserId type to the first type parameter of std::map,
we could both reduce code repetition and enable the programmer to consistently replace
std::map to another container, e.g., std::unordered_map,1 by performing the change in
only one place:

1An std::unordered_map is an STL container type that became available on all conforming platforms
along with C++11. The functionality is similar except that since it is not required to support ordered traver-
sal or, worst case, O[log(n)] lookups and O[n*log(n)] insertions, std::unordered_map can be implemented
as a hash table instead of a balanced tree, yielding significantly faster average access times. See cpprefb.

135

lorihughes
Cross-Out

lorihughes
Inserted Text
with




