
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 133 — #159

i
i

i
i

i
i

Section 1.1 C++11 using Aliases

Type/Template Aliases (Extended typedef)

The using keyword may now be used to introduce type aliases and alias templates, providing
a more general alternative to typedef that might also improve readability, especially for
function aliases.

Description

The keyword using has historically supported the introduction of an alias for a named entity,
e.g., type, function, or data, from some named scope into the current one. As of C++11, we
can employ the using keyword to achieve everything that could previously be accomplished
with a typedef declaration but in a syntactic form that many people find more natural and
intuitive but that offers nothing profoundly new:
using Type1 = int; // equivalent to typedef int Type1;
using Type2 = double; // equivalent to typedef double Type2;

In contrast to typedef, the name of the synonym created via the using syntax always
appears on the left side of the = token and separate from the type declaration itself, the
advantage of which becomes apparent with more involved types, such as pointer-to-function,
pointer-to-member-function, or pointer-to-data-member:
struct S { int i; void f(); }; // userdefined type S defined at file scope

using Type3 = void(*)(); // equivalent to typedef void(*Type3)();
using Type4 = void(S::*)(); // equivalent to typedef void(S::*Type4)();
using Type5 = int S::*; // equivalent to typedef int S::*Type5;

Just as with a typedef, the name representing the type can be qualified, but the symbol
representing the synonym cannot:
namespace N { struct S { }; } // original type S defined with namespace N

using Type6 = N::S; // equivalent to typedef N::S Type6;
using ::Type7 = int; // Error, the alias's name must be unqualified.

Unlike a typedef, however, a type alias introduced via using can itself be a template, known
as an alias template:
template <typename T>
using Type8 = T; // "identity" alias template

Type8<int> i; // equivalent to int i;
Type8<double> d; // equivalent to double d;

133

lorihughes
Cross-Out

lorihughes
Inserted Text
Aliases and Alias 

lorihughes
Cross-Out

lorihughes
Inserted Text
s

lorihughes
Cross-Out

lorihughes
Inserted Text
yet

lorihughes
Cross-Out

lorihughes
Inserted Text
being aliased




