
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 13 — #39

i
i

i
i

i
i

Section 1.1 C++11 Attribute Syntax

Any attribute may be qualified with an attribute namespace,2 i.e., a single arbitrary
identifier:
[[gnu::const]] // (GCCspecific) namespacegnuqualified const attribute
[[my::own]] // (userspecified) namespacemyqualified own attribute

C++ attribute placement

Attributes can be placed in a variety of locations within the C++ grammar. For each
such location, the Standard defines the entity or statement to which the attribute is said to
pertain. For example, an attribute in front of a simple declaration statement pertains to each
of the entities declared by the statement, whereas an attribute placed immediately after the
declared name pertains only to that entity:
[[foo]] void f(), g(); // foo pertains to both f() and g().
void u(), v [[foo]] (); // foo pertains only to v().

Attributes can apply to an entity without a name (e.g., anonymous union or enum):
struct S { union [[attribute_name]] { int a; float b; }; };
enum [[attribute_name]] { SUCCESS, FAIL } result;

The valid positions for any particular attribute are constrained to only those locations
where the attribute pertains to the entity to which it applies. That is, an attribute such as
noreturn, which applies only to functions, would be valid syntactically but not semantically
if it were used to annotate any other kind of entity or syntactic element. Misplacement of a
standard attribute results in an ill-formed program3:
void [[noreturn]] x() {} // Error, cannot be applied to a type

[[noreturn]] int i; // Error, cannot be applied to a variable
[[noreturn]] { throw; } // Error, cannot be applied to a statement

The empty attribute specifier sequence [[]] is allowed to appear anywhere the C++ gram-
mar allows attributes.

Common compiler-dependent attributes

Prior to C++11, no standardized syntax for attributes was available and nonportable com-
piler intrinsics — such as __attribute__((fallthrough)), which is GCC-specific syntax
— had to be used instead. Given the new standard syntax, vendors are now able to express

2Attributes having a namespace-qualified name — e.g., [[gnu::const]] — were only conditionally
supported in C++11 and C++14 but were historically supported by all major compilers, including both
Clang and GCC; all C++17-conforming compilers must support attribute namespaces.

3As of this writing, GCC is lax and merely warns when it sees the standard noreturn attribute in an
unauthorized syntactic position, whereas Clang correctly fails to compile. Hence, using even a standard
attribute might lead to different behavior on different compilers.

13

lorihughes
Inserted Text
ap

[appertain]

lorihughes
Inserted Text
ap

[appertains]

lorihughes
Inserted Text
ap

[appertains]

lorihughes
Inserted Text
ap

[appertains]

lorihughes
Inserted Text
ap

[appertains]

lorihughes
Inserted Text
ap

[appertains]

lorihughes
Cross-Out

lorihughes
Inserted Text
Each attribute is constrained to appertain to only certain entities and thus can appear in only the locations supported for a given entity's attributes.

