
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1278 — #1304

i
i

i
i

i
i

Glossary

well formed – implies, for a given program or program fragment, that it meets the language
requirements for proper translation, i.e., that no part of it is ill formed. Note that being well
formed does not imply that a program is correct; a well-formed program might still compute
results incorrectly or have undefined behavior at runtime; see also IFNDR. alignas (169)

wide contract – one without preconditions. Note that restrictions imposed by the C++ language
itself — e.g., that an input not have indeterminate value — are not considered preconditions
for the purpose of determining whether a contract is wide; see also narrow contract. Rvalue
References (750), final (1021), noexcept Specifier (1112)

widening the contract – the act of evolving the interface of a function having a narrow contract
by weakening or removing preconditions to increase its domain in a way that will not invalidate
any existing in contract call to the function. Note that a contract that has been widened is
not necessarily a wide contract (i.e., some preconditions might still exist).

witness argument – a specific value used as an argument in a test to prove that a function is
callable or has some other hard-to-discover but easy-to-verify behavior. constexpr Functions
(283)

working set – the set of memory pages (or cache lines) currently needed by the program over
some fixed time interval. If the working-set size is too large, the program will be subject to
thrashing. alignas (182), noexcept Specifier (1139)

xvalue – a glvalue that denotes an object whose resources can be reused. decltype (26), auto

Variables (206), Forwarding References (380), Rvalue References (710), decltype(auto) (1206)

Y combinator – a function object that indirectly holds a reference to itself, providing one form
of expressing recursive lambda expressions. Generic Lambdas (978)

zero cost – implies, for a given implementation choice (e.g., exception-handling model), that,
if not used (e.g, no exception is thrown), it imposes exactly zero additional runtime cost.
In particular, the zero-cost exception model was chosen in service of a fundamental design
criteria of C++ that, for a language feature to be adopted, it impose no general (i.e., no
program-wide) runtime overhead, “What you don’t use, you don’t pay for (zero-overhead
rule)” (stroustrup94, section 4.5, “Low-Level Programming Support Rules,” pp. 120–121,
specifically p. 121). Moreover, whenever such a feature is used, it (typically) couldn’t be hand
coded any better. See also zero-cost exception model. noexcept Specifier (1136)

zero-cost exception model – a technique for implementing C++ exception handling whereby
no instructions related to possible exceptions are inserted into the nonexceptional code path
(a.k.a. the hot path). This technique maximizes the speed of execution along the hot path by
avoiding a test, on each function call return, to check whether the called function exited
via an exception. Instead, the compiler generates tables that are used to lookup and jump
to appropriate exception-handling code (a.k.a. the cold path) when an exception is thrown.
Some compilers go so far as to put the cold path in entirely separate memory pages so that it
is not loaded into memory unless and until an exception is thrown, at the cost of much lower
runtime performance on the presumably rare occasions when the cold path code is taken.
noexcept Specifier (1134)

zero initialized – a form of initialization in which (1) scalar objects are initialized as if from an
integer literal 0, (2) all subobjects of array and class types are zero initialized, (3) the first
data members of objects of union type are zero initialized, with any padding bits set to zero,
and (4) reference types are not initialized. For example, objects having static storage duration

1278

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Sticky Note
Marked set by lorihughes

lorihughes
Cross-Out

lorihughes
Inserted Text
criterion


