
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1274 — #1300

i
i

i
i

i
i

Glossary

unique object address – implies, for a given object of a given type, that no other object of that
type resides at that same address at the same time. In general, two non-bit-field objects
having overlapping lifetimes must have distinct addresses unless one is nested within the
other (e.g., a base class subobject and the enclosing derived class object, or an object and
its first nonstatic data member) or they are of different types and at least one is an empty
base class (e.g., a base class and a nonstatic data member with a different type at offset
0). As of C++20, the requirement for an object to have a distinct address may be relaxed
under certain circumstances (e.g., for an empty member object of class type) through use of
the [[no_unique_address]] attribute. Generalized PODs ’11 (418)

unique ownership – a resource-management model in which at most one object can claim owner-
ship of a resource at any given time. The move operations for a type implementing this model
(a.k.a. a move-only type) will typically transfer ownership of any allocated resource to the
moved-to object, leaving the moved-from object resourceless. Destroying the current owner
releases the resource entirely — e.g., std::unique_ptr. Rvalue References (768)

unit test – a (sometimes standalone) test intended to verify the correctness of the implementation
of a single software component along with any of its inherent physical dependencies.

universal reference – a synonym for forwarding reference proposed by Scott Meyers, favored by
some, and discouraged by the C++ Standards Committee. Forwarding References (400)

unnamed namespace – one introduced without a name (a.k.a. an anonymous namespace). Any
entity that is declared within an unnamed namespace is unique to the translation unit in which
it is defined, has internal linkage (which, for an object, is comparable to declaring it static
at file scope), and can be used as if it were declared in the enclosing namespace without
additional qualification (see Section 3.1.“inline namespace” on page 1055). Function static

’11 (77)
unqualified id – an identifier (e.g., x), operator name (e.g., operator=), or template id (e.g.,

T<A,C::B>) that is not preceded by a scope-resolution operator (::) or class member access
operator (. or ->).

unqualified name lookup – the process by which an unqualified ID is matched to an entity by
searching through enclosing class and namespace scopes, as well as associated namespaces
nominated by argument-dependent lookup (ADL). User-Defined Literals (841)

unrelated types – types that are either (1) entirely unrelated by inheritance or (2) do not share
a common polymorphic class as a base class (note that pointers and references to unrelated
types are not interconvertible using dynamic_cast). Generalized PODs ’11 (507)

unsigned ordinary character type – either unsigned char or, on platforms where char is
unsigned, char. Generalized PODs ’11 (515)

usable – implies, for a given member function, that it is accessible, defined, and, in the context
in which it is called, unambiguous, i.e., overload resolution will identify it as the best viable
function.

usable literal type – one that provides a nonempty set of operations beyond merely those
required of it to be a literal type, enabling meaningful use in a constant expression. constexpr
Functions (282)

user declared – implies, for a given function, that its declaration appears in the source code irre-
spective of whether it is deleted or defaulted; see Section 1.1.“Deleted Functions” on page 53
and Section 1.1.“Defaulted Functions” on page 33, respectively. constexpr Functions (274),
Generalized PODs ’11 (413), noexcept Specifier (1086)

1274

lorihughes
Highlight
[set the whole term in gloss font]

lorihughes
Highlight
[set the whole term in gloss font]




