
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 127 — #153

i
i

i
i

i
i

Section 1.1 C++11 Trailing Return

Avoiding having to qualify names redundantly in return types

When defining a function outside the class, struct, or namespace in which it is first
declared, any unqualified names present in the return type might be looked up differently
depending on the particular choice of function-declaration syntax used. When the return
type precedes the qualified name of the function definition as is the case with classic syntax,
all references to types declared in the same scope where the function itself is declared must
also be qualified. By contrast, when the return type follows the qualified name of the func-
tion, the return type is looked up in the same scope in which the function was first declared,
just like its parameter types would. Avoiding redundant qualification of the return type can
be beneficial, especially when the qualifying name is long.
As an illustration, consider a class representing an abstract syntax tree node that exposes
a type alias:

struct NumericalASTNode
{

using ElementType = double;
auto getElement() ­> ElementType;

};

Defining the getElement member function using traditional function-declaration syntax
would require repetition of the NumericalASTNode name:

NumericalASTNode::ElementType NumericalASTNode::getElement() { /*...*/ }

Using the trailing-return-type syntax handily avoids the repetition:

auto NumericalASTNode::getElement() ­> ElementType { /*...*/ }

By ensuring that name lookup within the return type is the same as for the parameter types,
we avoid needlessly having to qualify names that should be found correctly by default.

Improving readability of declarations involving function pointers

Declarations of functions returning a pointer to either a function, a member function, or a
data member are notoriously hard to parse, even for seasoned programmers. As an example,
consider a function called getOperation that takes a kind of enumerated Operation as its
argument and returns a pointer to a member function of Calculator that takes a double
and returns a double:

double (Calculator::*getOperation(Operation kind))(double);

As we saw in the description, such declarations can be constructed systematically but do
not exactly roll off the fingers. On the other hand, by partitioning the problem into (1)
the declaration of the function itself and (2) the type it returns, each individual problem
becomes far simpler than the original:

127

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
denoted by the qualifier of the declaration,




