
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1267 — #1293

i
i

i
i

i
i

Glossary

inheriting constructors (see Section 2.1.“Inheriting Ctors” on page 535) to avoid having to
rewrite the derived-class constructors explicitly. For integer types, a classical enum having the
original type as its underlying type (see Section 2.1.“Underlying Type ’11” on page 829) can
serve the same purpose. Function static ’11 (74)

structural inheritance – a form of inheritance in which non-virtual functions are inherited
by a derived class; see also implementation inheritance. Deleted Functions (57), alignas (180),
Inheriting Ctors (545), final (1025)

structural type – a category of type, introduced in C++20, used to characterize the extended set
of allowable types for values supplied as non-type template parameters, which include integral
type, enumeration type, pointer type, pointer-to-member type, lvalue reference type, as well
as floating-point type and class types made up of other structural types.

structured binding – a C++17 feature that introduces new names bound to the subobjects of the
object produced by the expression that initializes them, i.e.,
auto [a,b] = std::make_tuple(17,42); where a will be initialized to 17 and b will hold
the value 42. Range for (685)

substitution failure is not an error (SFINAE) – a property of C++ template instantiation
that enables the technique of supplying template arguments to a function template to
determine if the resulting function will participate in overload resolution or supplying tem-
plate arguments to a template partial specialization to determine whether it is eligible to be
instantiated; errors that result from substituting certain (e.g., syntactically incompatible)
arguments for the template parameters result merely in that particular template instantiation
being dropped from the overload set, and is not (in and of itself) ill formed.

sum type – an abstract data type allowing the representation of one of multiple possible alterna-
tive types. Each alternative has its own type (and state), and only one alternative can be
active at any given point in time. Sum types keep track of which choice is active and properly
implement (value-semantic) special member functions (even for non-trivial types). They can
be implemented efficiently as a C++ class using a union and a separate (integral) discrim-
inator. This sort of implementation is commonly referred to as a discriminating (or tagged)
union and is available in C++17 as std::variant. union ’11 (1177)

synchronization paradigm – the general approach used to coordinate memory reads and writes
among two or more concurrent threads of execution. As used in this book, one of two
approaches within the release-acquire/consume memory consistency model — release-acquire
or release-consume. carries_dependency (998)

syntactic sugar – language and library features that ease the use of the language by providing
more ergonomic interfaces that obviate more verbose or difficult-to-use syntax but do not
themselves provide new functionality.

template argument – the type, template, or value mapped to a template parameter in the instan-
tiation of a template. Variadic Templates (899)

template argument deduction – the process by which template arguments are determined from
the types of the function arguments when calling a function template. Variadic Templates (894)

template argument list – the sequence of arguments — types, templates, or values, depending
on the corresponding parameters — that are used to specify explicit, nondeduced arguments
to a template instantiation. Variadic Templates (882)

template head – the keyword template and associated template parameter list used to introduce
the declaration or definition of a template. Variable Templates (157)

1267

lorihughes
Cross-Out

lorihughes
Inserted Text
Constructors




