
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1248 — #1274

i
i

i
i

i
i

Glossary

metaprogramming – the act of writing code whose input and output is, itself, code; specifically
(in C++), a programming paradigm in which class and function templates are defined in such
a way as to generate on-demand highly configurable interfaces and implementations under the
control of their template parameters (metaparameters). In this paradigm, the template pro-
grammer writes code that, in turn, controls a sophisticated code generator (the template-
instantiation engine), which will generate source code when the template is instantiated. C++
template metaprogramming was ushered into classical C++ during the 2000s in large part
by Andrei Alexandrescu (alexandrescu01). decltype (30), constexpr Functions (257), Variadic
Templates (876)

Meyers' singleton – one that is implemented as a static variable in function scope, popularized
by Scott Meyers; see meyers96, “Techniques,” item 26, “Allowing Zero or One Objects,”
pp. 130–138. Function static ’11 (72)

microbenchmark – a benchmark that is characterized by itself being small and typically per-
forming one or a few operations many times in a loop; such benchmarks are often used to
model real-world programs but might not be reflective of behavior in larger, long-running
ones — e.g., due to memory diffusion.

mix-in – a type intended to provide a (perhaps partial) implementation of the desired derived
type, often via (perhaps private) structural inheritance, such as in the CRTP (to achieve the
EBO, at least until C++20); see Section 3.1.“final” on page 1007. A derived (e.g., adapter)
type might multiply inherit publicly from both a mix-in and an abstract-interface, which can
then be used to access and manipulate the mix-in polymorphically; see lakos96, Appendix
A, “The Protocol Hierarchy Design Pattern,” pp. 737–768, specifically item 6, pp. 754–755.

mixed-mode build – one that comprises multiple translation units built using distinct but
compatible build modes (compiler settings) — e.g., different levels of optimization.
inline namespace (1073)

mock – an artificial, often highly configurable, implementation of an abstract interface, control-
lable by a higher-level agent, used for the testing technique known as mocking. A well-designed
mock implementation will often (1) record its inputs from the client for analysis by the testing
agent and (2) provide specific outputs to be consumed (e.g., in response to inputs) by the
client; see also mocking.

mocking – a testing technique that involves spoofing a client of an abstract interface using an
artificial implementation that acts at the will of a higher-level agent orchestrating the test
of said client. This approach enables the testing agent to assess and evaluate the behavior of
the client even under unusual, exceptional, or error conditions; see also mock. final (1017)

modules – a C++20 feature that introduces a new way to organize C++ code, which provides
better encapsulation than do conventional headers. Note, however, that modules, as currently
defined, do absolutely nothing new with respect to insulation. friend ’11 (1041)

monotonic allocator – a managed allocator that dispenses memory from one or more contiguous
regions of memory in a sequential fashion, yielding both fast allocations and dense memory
utilization. Memory is reclaimed only when the allocator object itself is destroyed or its
release method is invoked; individual deallocations are no-ops. Note that imprudent use
of such an allocator can result in a pseudo memory leak. The C++17 Standard Library
provides monotonic allocator functionality via the std::pmr::monotonic_buffer_resource
class. alignof (190), final (1021)

1248

lorihughes
Cross-Out
[delete apostrophe]




