
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1243 — #1269

i
i

i
i

i
i

Glossary

integral constant expression, and integral type. Deleted Functions (56), enum class (334), Rvalue
References (726), Underlying Type ’11 (832)

integral type – a category of fundamental types, codified by the std::is_integral trait, denoting
one of bool, char, signed char, unsigned char, char16_t, char32_t, wchar_t, and the familiar
signed and unsigned variations on short, int, long, long long (see Section 1.1.“long long”
on page 89), and any implementation-defined extended-integer type; C++20 adds char8_t to
this list. long long (89), Underlying Type ’11 (829)

interface inheritance – a form of inheritance in which the interface (only) of one or more pure
virtual functions declared in a base class is inherited in a derived class; see also implemen-
tation inheritance. Inheriting Ctors (541)

interface trait – a (typically standard) trait, such as std::is_trivially_destructible, that
describes an aspect of the usable interface of a type but does not correspond to a prop-
erty named in the core language specification; see also core trait. Generalized PODs ’11 (482)

internal linkage – linkage that prevents an entity from being referenced by name from another
translation unit. Multiple distinct entities having internal linkage may have the same name,
provided each resides in a separate translation unit; see also external linkage. Function static

’11 (77), constexpr Variables (307)

intra-thread dependency – a data dependency that exists between evaluations within a single
thread. carries_dependency (998)

invocable – implies, for a given entity f and zero or more arguments t1, t2, ..., tN, that one of
(t1.*f)(t2, ..., tN), ((*t1).*f)(t2, ..., tN), t1.*f, (*t1).*f, or f(t1, t2, ..., tN) is
well formed at the point of invocation — i.e., f must be usable and either a (1) callable entity,
(2) pointer-to-member function, or (3) pointer-to-data member. Generalized PODs ’11 (482),
Lambda Captures (986)

invocable entity – one that is invocable; see also callable entity.
join (a thread) – the operation by which execution of the current thread is suspended until

execution of one or more other threads completes.
lambda body – the statements in a lambda expression that will form the body of a lambda clo-

sure’s call operator. Lambdas (581), Generic Lambdas (976)

lambda capture – a syntax by which variables from a reaching scope are made available for use
within the body of a lambda expression. See also captured by copy and captured by reference.
Lambdas (577), Variadic Templates (919), Generic Lambdas (969)

lambda closure – the object created by evaluating a lambda expression. Lambdas (584)

lambda declarator – the function parameter list, mutability, exception specification, and return
type of a lambda expression, all of which are imbued on the call operator of the lambda closure.
Lambdas (591)

lambda expression – an anonymous callable type having unnamed data members used to store
values that are, by default, captured by copy (=) or else captured by reference (&); see Sec-
tion 2.1.“Lambdas” on page 573. Local Types ’11 (83), Lambdas (576), Generic Lambdas (968),
Lambda Captures (995), auto Return (1182), decltype(auto) (1206)

lambda introducer – a possibly empty lambda capture list, surrounded by [], used to begin
a lambda expression; e.g., [](){} is a lambda expression that captures nothing, takes no
arguments, does nothing, and returns void. Lambdas (582), Lambda Captures (986)

1243

lorihughes
Cross-Out

lorihughes
Inserted Text
a category of fundamental types (which may be characterized by the `std::is_integral` trait), comprising `bool`, `char`, `signed char`, `unsigned char`, `char16_t`, `char32_t`, `wchar_t`, and both the signed and unsigned versions of `short`, `int`, `long`, and `long long`. C++20 adds a new integral type, `char8_t`. There may also be additional implementation-defined **extended integer types** (e.g., `__int128`). Note that the names `std::intX_t` and `std::uintX_t` defined in the `<cstdint>` header, if they are defined at all, are **type aliases** and are therefore not additional distinct integral types.

