
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1241 — #1267

i
i

i
i

i
i

Glossary

implicitly movable entity – one that, as of C++20, will be treated as an xvalue, e.g., a variable
having automatic storage duration that is either a nonvolatile object or an rvalue reference
to a nonvolatile object. Rvalue References (735)

in contract – implies, for a given function invocation, that none of the preconditions in the func-
tion’s contract are violated. noexcept Specifier (1122)

in place – implies, for a given object, its construction directly into a particular memory location,
e.g., by emplacement, rather than being passed a constructed object and then copying or
moving it into place. Rvalue References (734)

in-process – implies, for a given value (such as an object’s address), that it is meaningful only
within the currently running process. friend ’11 (1034)

incomplete type – one that has been declared but not defined. Note that a class type is considered
to be incomplete within its own class definition unless it is within a complete-class context
for that type.

indeterminate value – one that cannot be relied upon in any way (e.g., not even to not change
spontaneously); for example, any nonstatic object of scalar type, such as int, that is not
explicitly initialized has an indeterminate value, as do any bits within the footprint of an object
used to ensure alignment (a.k.a. padding) or to hold a virtual table (or base) pointer. Most uses
of an indeterminate value have undefined behavior; see Section 2.1.“Generalized PODs ’11”
on page 401. Generalized PODs ’11 (435)

infallible – implies, for a given function, that it will never fail to satisfy its contract (e.g., due to
resource limitations); see infallible implementation. noexcept Specifier (1118)

infallible implementation – a function definition that can reasonably be expected to satisfy its
contract on any relevant platform regardless of the availability of system resources (e.g., heap
memory, stack memory, file handles, mutexes). noexcept Specifier (1118)

inheriting constructors – the C++11 feature (see Section 2.1.“Inheriting Ctors” on page 535)
whereby constructors can be inherited from a base class via using directives; each inherited
constructor has essentially the same signature in the derived class, invokes the relevant base
class constructor, and initializes derived-class data members in the same way an implicit
default constructor would initialize them. Inheriting Ctors (538)

init capture – a form of capture in a lambda expression, since C++14 (see Section 2.2.“Lambda
Captures” on page 986), that specifies an initializer expression, essentially adding a new data
member of deduced type to the closure object; see captured by copy and captured by reference.
Lambda Captures (986)

inline namespace – a variant of namespace, since C++11 (see Section 3.1.“inline namespace” on
page 1055), in which a namespace declared using the inline keyword enables name lookup in
an enclosing namespace (e.g., via ADL) to find names declared within a nested inline name-
space, similar to providing a using (namespace) directive after the close of a conventionally
nested namespace. What’s more, an inline namespace enables templates to be specialized
from within the enclosing namespace. Note that name conflicts that might arise with an
enclosing name are addressed quite differently for an inline namespace compared to a con-
ventional one. inline namespace (1055)

instantiation time – short for template instantiation time. static_assert (120)

instruction selection – a form of compiler optimization in which optimal (otherwise equivalent)
sets of instructions are selected based on the target platform and other aspects of the context

1241

lorihughes
Pencil
delete hyphen and allow space

lorihughes
Sticky Note
Unmarked set by lorihughes

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font; use gloss font]

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[keep using in code font; add gloss font for namespace directive. The whole thing refers to the using-namespace directive gloss item.]

lorihughes
Highlight
[remove code font; use gloss font]

lorihughes
Cross-Out

lorihughes
Inserted Text
-

lorihughes
Cross-Out

lorihughes
Cross-Out

lorihughes
Inserted Text
Constructors

lorihughes
Inserted Text
Init-




