
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1240 — #1266

i
i

i
i

i
i

Glossary

horizontal encoding – a convention whereby the meaning of certain bits that occur throughout
an encoding (e.g., the microcode of a computer) are independent of the values of bits that
occur elsewhere in that encoding.

hot path – the part of a program (specifically, generated object code) that is executed under
normal and frequently encountered conditions; see also cold path. noexcept Specifier (1103)

Hyrum's law – the observation attributed to Hyrum Wright of Google that, given a sufficient
number of users of an API, all observable behavior — notably including those that are
undocumented, unintentional, nonessential, or unstable — will be depended upon by the
user base. final (1012), friend ’11 (1036)

id expression – a qualified id or unqualified id that can be used to name an entity or a set of
entities, such as variable names, function names, and (after a . or ->) class member names.
decltype (25), Rvalue References (780)

identity – a property of an expression that can be identified uniquely, e.g., by name or address,
independently of its value; see also has identity.

IFNDR – short for ill formed, no diagnostic required.
ill formed – implies, for a given program, that it is not valid C++. A compiler is required to

fail to compile such a program and issue an appropriate diagnostic (error) message unless
the ill formed nature is explicitly identified as one where no diagnostic is required (a.k.a.
IFNDR); see ill formed, no diagnostic required. static_assert (120), Braced Init (227), constexpr
Variables (303), User-Defined Literals (839), inline namespace (1067), auto Return (1203)

ill formed, no diagnostic required (IFNDR) – implies, for a given program, that it is ill formed
in a way where the compiler is not required to issue a diagnostic. Typical examples of IFNDR,
such as violations of the ODR, do not require a diagnostic because identifying the problem
would either drastically impact compile times or be otherwise impracticable (if not impossible)
in general. Delegating Ctors (50), static_assert (117), alignas (177), constexpr Functions (262),
enum class (350), Opaque enums (666), Underlying Type ’11 (832), User-Defined Literals (840), Vari-
adic Templates (900), carries_dependency (1000), inline namespace (1067)

immutable type – a user-defined type for which objects instantiated from that type, once fully
constructed, cannot be changed. Ref-Qualifiers (1167)

imperative programming – implies, for a given language or programming paradigm, the use of
a sequence of statements describing the evaluations of expressions that progressively mutate
existing state (e.g., variables, objects) within a program instead of always creating new objects
of immutable types as is common in declarative or functional programming. constexpr Functions
’14 (959)

implementation defined – implies, for a given behavior, that it is not fully specified by the
Standard but that an implementation must specify in its documentation. Attribute Syntax (12),
nullptr (100), alignas (168), constexpr Functions (295), enum class (335), Generalized PODs ’11
(501), Opaque enums (660), Rvalue References (747), noexcept Specifier (1093)

implementation inheritance – a form of inheritance in which the implementation of a non-
virtual or nonpure virtual function defined in a base class is inherited along with its interface
in a derived class; note that inheriting the definitions of nonvirtual functions is sometimes
referred to more specifically as structural inheritance; see also interface inheritance. Inheriting
Ctors (541)

1240

lorihughes
Cross-Out

lorihughes
Inserted Text
-




