
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1230 — #1256

i
i

i
i

i
i

Glossary

defaulted special member function – a (user-declared) special member function specified (see
Section 1.1.“Defaulted Functions” on page 33) to be implemented using its default (i.e.,
compiler-generated) definition. Note that, in some situations (e.g., see Section 3.1.“union ’11”
on page 1174), the compiler may choose to delete an implicitly or explicitly declared and
defaulted function.

defect report (DR) – an acknowledgment by the C++ Standards Committee of a defect in the
current C++ Standard that is considered by ISO to apply to the currently active C++
Standard and is generally taken by implementers to apply to all previous versions of the
C++ Standard where the change would be both applicable and practicable. Braced Init (218),
constexpr Functions (280), Generalized PODs ’11 (432), Inheriting Ctors (551), initializer_list

(561), Lambdas (594), noexcept Operator (615), Range for (681), Rvalue References (722), noexcept
Specifier (1086)

defensive check – one typically performed at runtime (e.g., using a C-style assert macro) to
verify some condition that is impossible to occur in a correct program. A common use case is
to verify, for a given function, that there has not been a contract violation — i.e., a precondition
or postcondition violation — yet is entirely superfluous in a correctly implemented program.
Generalized PODs ’11 (468), Rvalue References (744)

defensive programming – a term, sometimes (mis)used, to suggest generally good programming
practice implies the use of defensive checks to, for example, detect client misuse of a given
function, by violating its preconditions when invoking it. final (1024)

define – to provide, for a given entity, any additional details, e.g., size, layout, address, etc., beyond
just its declaration, needed to use that entity in a running process. Deleted Functions (58),
Forwarding References (390), Rvalue References (762), Variadic Templates (880)

defined dehavior – (1) behavior that is unambiguously codified in terms of C++’s abstract
machine or (2) the full set of behaviors defined for a given component or library. Note that
invoking a component or library out of contract is library undefined behavior (a.k.a. soft UB),
which might lead to language undefined behavior (a.k.a. hard UB). noexcept Specifier (1112)

defining declaration – one — such as class Foo { }; — that provides a complete definition of
the entity being declared. Note that a typedef or using declaration (see Section 1.1.“using
Aliases” on page 133) would not be considered defining because, according to the C++
Standard, neither is a definition. Also note that an opaque enumeration declaration does not
provide the enumerators corresponding to the complete definition and, although sufficient to
instantiate opaque objects of the enumerated type, does not allow for interpretation of their
values; hence, it too would not be considered defining; see also nondefining declaration. Rvalue
References (729)

definition – a statement that fully characterizes an entity (e.g., type, object, or function); note
that all definitions are subject to the one-definition rule. Function static ’11 (68), constexpr

Variables (315), Variadic Templates (879), noexcept Specifier (1105)

delegating constructor – one that, rather than fully initializing data members and base-class
objects itself, invokes another constructor after which it might perform additional work in its
own body (see Section 1.1.“Delegating Ctors” on page 46). Delegating Ctors (46)

deleted – implies (1) for a given function, that it has been rendered inaccessible from any ac-
cess level — either explicitly, by being annotated using = delete (see Section 1.1.“Deleted
Functions” on page 53) or implicitly (e.g., see Section 3.1.“union ’11” on page 1174); or (2) for
a given pointer to a dynamically allocated object, that the (typically global) delete operator

1230

lorihughes
Cross-Out

lorihughes
Inserted Text
b


