
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1224 — #1250

i
i

i
i

i
i

Glossary

common type – the one that, for two given types, results from applying the ternary operator (?:)
to two expressions of those respective types. Note that, for arithmetic types, the common type
is the same type that would result for binary arithmetic operators applied to those
types; for class types, however, the common type, if one exists, must be one of the two
given types (modulo cv-qualifications); i.e., either they are the same type or there exists an
unambiguous implicit conversion sequence from one to the other but not vice versa. auto

Return (1186)

compile-time constant – (1) a (typically named) constant suitable for evaluation in a constant
expression; (2) the value of any constant expression that is computed and available for use at
compile time. enum class (346)

compile-time coupling – a tight form of physical interdependency across components that neces-
sitates the recompilation of one component when some aspect of another’s implementation
changes. Opaque enums (663)

compile-time dispatch – the implementation technique determining which operation to invoke,
depending on operand types, based on compile-time operations, often accomplished using
function overloading, SFINAE, and, as of C++20, concepts. static_assert (121)

compile-time introspection – the implementation technique of altering program behavior and
code generation based on compile-time observable properties of other entities, particularly
using templates and type deduction, and also the primary motivation for ongoing research
into reflection. Variadic Templates (947)

complete-class context – a semantic region within the lexical scope of a class definition in which
the class (as a whole) itself is considered to be a complete type — e.g., function bodies, default
arguments, default member initializers (see Section 2.1.“Default Member Init” on page 318),
and noexcept specifiers (see Section 3.1.“noexcept Specifier” on page 1085). Default Member
Init (319), noexcept Specifier (1086)

complete type – one whose complete definition has been seen, thereby allowing a compiler to
know the layout and footprint of objects of that type. alignof (184), Default Member Init (319),
enum class (350), Opaque enums (661), Rvalue References (720), Variadic Templates (891)

component – a physical unit of design consisting of two files: a header (or .h) file and a source (or
.cpp) file, often accompanied by an associated test driver (or .t.cpp) file. extern template (359),
Opaque enums (665), friend ’11 (1035), inline namespace (1068)

component local – implies, for a given (logical) entity (class, function, template, typedef, macro,
etc.), that — even though it is programmatically accessible — it is not intended (often indi-
cated by naming convention) for consumption outside of the component in which it is defined
or otherwise provided. Opaque enums (664)

composite pattern – a recursive design pattern that allows a single object or a group of objects to
be treated uniformly for a common subset of operations via a common supertype; this pattern
is useful for implementing part-whole hierarchies, such as a file system in which an object of
the abstract Inode supertype is either a concrete composite Directory object, containing zero
or more Inode objects, or else a concrete leaf File object. final (1020)

concepts – a C++20 feature that provides direct support for compile-time constraints on tem-
plate parameters (limiting which potential template arguments match) to appropriately narrow
the applicability of a template. Additionally, concepts can be used to add ordering between

1224

lorihughes
Inserted Text
the

lorihughes
Inserted Text
feature

i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1225 — #1251

i
i

i
i

i
i

Glossary

constrained templates — i.e., more constrained and less constrained templates can be imple-
mented differently, and the most constrained one that is applicable for a particular invoca-
tion will be preferred for instantiation. Moreover, concepts afford advantages with respect to
compile-time error detection and especially diagnostics. Prior to C++20, much of the same
functionality was available using SFINAE and other advanced template metaprogramming
techniques, but, among other things, concepts make expressing the requirements on template
parameters simpler and clearer and allow constraining nontemplate constructors of class tem-
plates. static_assert (122), auto Variables (208), Generalized PODs ’11 (480), initializer_list

(571), auto Return (1201)

concrete class – one from which objects can be instantiated; see also abstract class. Inheriting
Ctors (540), final (1008)

conditional compilation – the selective compilation of contiguous lines of source code, control-
lable from the command line (e.g., using the D switch with gcc and clang), by employing
standard C and C++ preprocessor directives such as #if, #ifdef, #ifndef, #else, #elif, and
#endif. Generalized PODs ’11 (469)

conditional expression – one that (1) consists of an application of the ternary operator (?:) or
(2) is contextually convertible to bool and used to determine the code path taken in control-
flow constructs such as if, while, and for, or as the first argument to a short-circuit logical
or ternary operator (&&, ||, or ?:). noexcept Operator (615)

conditional noexcept specification – one having the form noexcept (<expr>) where <expr> is
both a conditional expression and a constant expression, used to determine at compile time
whether that function is to be declared noexcept(true). noexcept Operator (639)

conditionally compile – the act of performing conditional compilation. Generalized PODs ’11 (469)

conditionally supported – implies, for a particular feature, that a conforming implementation
may choose to either support that feature as specified or not support it at all; if it is not
supported, however, the implementation is required to issue at least one error diagnostic.
Attribute Syntax (13), Generalized PODs ’11 (425)

conforming implementation – one (e.g., a compiler) that satisfies all of the requirements of the
version of the C++ Standard it attempts to implement.

constant expression – one that can be evaluated at compile time. Deleted Functions (59),
static_assert (115), Braced Init (224), constexpr Functions (257), constexpr Variables (302), Gen-
eralized PODs ’11 (431), initializer_list (554), User-Defined Literals (836), constexpr Functions
’14 (960), noexcept Specifier (1091)

constant initialization – initialization of an object (e.g., one having static or thread storage
duration) with values and operations that are evaluable at compile time. Function static

’11 (75)

constant time – a bound on the runtime complexity of a given operation such that execution
completes within a constant time interval, regardless of the size of the input; see also amortized
constant time.

contextual convertibility to bool – implies, for a given expression E, that the definition of a
local variable b, such as bool b(E), would be well-formed; see also conditional expression. See
also contextually convertible to bool. explicit Operators (63)

contextual keyword – an identifier, such as override (see Section 1.1.“override” on page 104)
or final (see Section 3.1.“final” on page 1007), that has special meaning in certain specific

1225

lorihughes
Inserted Text
the

lorihughes
Cross-Out

lorihughes
Inserted Text
feature affords

lorihughes
Inserted Text
the

lorihughes
Cross-Out

lorihughes
Inserted Text
feature makes

