
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 121 — #147

i
i

i
i

i
i

Section 1.1 C++11 static_assert

value, whose value is false. Although this second implementation is more likely to produce
the desired result (i.e., a controlled compilation failure only when serialize is invoked
with unsuitable arguments), sufficiently sophisticated compilers looking at just the current
translation unit would still be able to know that no valid instantiation of serialize exists
and would therefore be well within their rights to refuse to compile this still technically ill
formed program.
Equivalent workarounds achieving the same result without a helper class are possible.
template <typename T>
void serialize(char* buffer, const T& object, SerializableTag<false>) // (2c)
{

static_assert(0 == sizeof(T), "T must be serializable."); // OK
// not too obviously ill formed: compiletime error when instantiated

}

Using this sort of obfuscation is not guaranteed to be either portable or future-proof.

Misuse of static assertions to restrict overload sets

Even if we are careful to fool the compiler into thinking that a specialization is wrong only
if instantiated, we still cannot use this approach to remove a candidate from an overload set
because translation will terminate if the static assertion is triggered. Consider this flawed
attempt at writing a process function that will behave differently depending on the size of
the given argument:
template <typename T>
void process(const T& x) // (1) first definition of process function
{

static_assert(sizeof(T) <= 32, "Overload for small types"); // BAD IDEA
// ... (process small types)

}

template <typename T>
void process(const T& x) // (2) compiletime error: redefinition of function
{

static_assert(sizeof(T) > 32, "Overload for big types"); // BAD IDEA
// ... (process big types)

}

While the intention of the developer might have been to statically dispatch to one of the two
mutually exclusive overloads, the ill-fated implementation above will not compile because the
signatures of the two overloads are identical, leading to a redefinition error. The semantics of
static_assert are not suitable for the purposes of compile-time dispatch, and SFINAE-
based approaches might be used instead.
To achieve the goal of removing up front a specialization from consideration, we will need to
employ SFINAE. To do that, we must instead find a way to get the failing compile-time
expression to be part of the function’s declaration:

121

lorihughes
Cross-Out

lorihughes
Inserted Text
Note that this intermediate class template could always have a specialization for some type where `value` is `true`; thus the possibility always exists that this function template could be instantiated with types for which such a specialization of `AlwaysFalse` is provided, making the template itself well formed even when all instantiations would, in practice, be ill formed.

lorihughes
Cross-Out

lorihughes
Inserted Text
A similar workaround using an expression that is always guaranteed to be false would, however, be ill formed, no diagnostic required:

lorihughes
Cross-Out

lorihughes
Inserted Text
in an overload set

lorihughes
Cross-Out

lorihughes
Inserted Text
can




