
i
i

“LakosRomeo-EMCS-FinalDesign” — 2021/10/25 — 10:08 — page 1207 — #1233

i
i

i
i

i
i

Section 3.2 C++14 decltype(auto)

decltype(lvref()) v1 = lvref(); // deduced as int&
decltype(auto) v2 = lvref(); // equivalent to v1

decltype(rvref()) v3 = rvref(); // deduced as C1&&
decltype(auto) v4 = rvref(); // equivalent to v3

decltype(c1) v5 = c1; // deduced as C1
decltype(auto) v6 = c1; // equivalent to v4

decltype((c1)) v7 = c1; // deduced as C1&
decltype(auto) v8 = (c1); // equivalent to v7

decltype(cc1) v9 = cc1; // deduced as const C1
decltype(auto) v10 = cc1; // equivalent to v9
decltype((cc1)) v11 = cc1; // deduced as const C1&
decltype(auto) v12 = (cc1); // equivalent to v11

decltype({ 3 }) v13 = { 3 }; // Error, not an expression
decltype(auto) v14 = { 3 }; // Error, not an expression

The semantics of the decltype operator, when applied to an expression consisting of a single
variable, cause decltype(c1) to yield type C1 and decltype((c1)) to yield reference type
C1&, as in the definitions of v5 and v7, respectively; variables v6 and v8, therefore, also have
the types C1 and C1&. A braced-initializer list such as { 3 } is not an expression; thus, v13
and v14 are both invalid.
Note that functions returning scalar types discard top-level cv-qualifiers on their return
types, so a type deduced from a call to such a function will not reflect top-level cv-qualifiers
even when defined with decltype(auto):
template <typename T> T f();

decltype(auto) v15 = f<const C1>(); // deduced as const C1
decltype(auto) v16 = f<const int>(); // " " int
decltype(auto) v17 = f<const int&>(); // " " const int&
decltype(auto) v18 = f<const char* const>(); // " " const char*

The top-level const qualifier on the class type, const C1, and on the reference type,
const int&, are preserved but not on the scalar type, const int. The constness of the
pointer itself, in const char* const, is similarly discarded, as it is the top-level cv-qualifier
on a scalar type.
When a function name is used as the initializer expression, it automatically decays to a
pointer type when initializing a variable declared with type auto but does not decay when

1207

lorihughes
Cross-Out

lorihughes
Inserted Text
5




