
i
i

“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1200 — #1226

i
i

i
i

i
i

auto Return Chapter 3 Unsafe Features

In the example above, the call to n2 when N is 1 selects the leaf case (nontemplate) version
and does not recursively instantiate the template version of n2.

Potential Pitfalls

Negative impacts on abstraction and insulation

If a library function provides an abstract interface, the user needs to read and understand
only the function’s declaration and its documentation. Except when maintaining the library
itself, the function’s implementation details are unimportant.
If a program insulates a library user from the library’s implementation by placing the imple-
mentation code in a separate translation unit, compile-time coupling between library
code and client code is reduced. A library that does not include function implementations
in its header files can be rebuilt to provide updates without needing to recompile clients;
only a relink is needed. Compilation times for client code are minimized by not needing to
recompile library source code within header files.
Deduced function return types interfere with both abstraction and insulation and thus with
the development of large-scale, comprehensible software. Because the return type cannot
be determined without its implementation being visible to the compiler, publicly visible
functions having deduced return types cannot be insulated; they must necessarily appear in
a header file as inline functions or function templates, thereby being recompiled for every
client translation unit. In this regard, a function with deduced return type is no different
than any other inline function or function template. What is new, however, is its impact
on abstraction: To fully understand a function’s interface — including its return type — the
user must read its implementation.
To mitigate the loss of abstraction from deduced return types, the function author can
carefully document the expected properties of the returned object, even in the absence of a
specific concrete type. Interestingly, understanding the return value’s properties, not merely
its type, might yield a resulting function that is more abstract than one for which a known
type had been specified.

Reduced clarity

Not having the return type of a function visible in its declaration can reduce the clarity of a
program. Deduced return types work best when they appear on tiny function definitions, so
that the determinative return statement is easily visible. Functions having deduced return
types are also well suited for situations where the particulars of a return type are not
especially useful, as in the case of iterator types associated with containers.

1200

lorihughes
Highlight
[remove code font]

lorihughes
Highlight
[remove code font]




