“LakosRomeo-EMCS-FinalDesign” — 2023/4/7 — 14:32 — page 1196 — #1222

auto Return Chapter 3 Unsafe Features

template <int DDL, int MDL, int TDL, int DDR, int MDR, int TDR>
auto operator/(Unit<DDL,MDL,TDL> lhs, Unit<DDR, MDR,TDR> rhs)

{
return Unit<DDL-DDR, MDL-MDR, TDL-TDR>(lhs.value() / rhs.value());

The return types for the multiplicative operators are somewhat awkwardly long, and without
deduced return types, those long names would need to appear twice, once in the function
declaration and once in the return statement.

As a workaround, operator* and operator/ could introduce a defaulted template param-
eter to avoid the repetition of the return type:

template <int DD1, int MD1, int TD1, int DD2, int MD2, int TD2,
typename R = Unit<DD1+DD2, MD1+MD2, TD1+TD2>>

R operator*(Unit<DD1,MD1,TD1> lhs, Unit<DD2,MD2,TD2> rhs)

{

return R(lhs.value() * rhs.value());

However, the workaround does not apply to nentemptated-funetions, such as kineticEnergy.

We can now use these operations to implement a function that returns the kinetic energy of
a moving object:

auto kineticEnergy(Kilograms m, Mps v)
// Return the kinetic energy of an object of mass m moving at velocity v.

return m * (v * v) / Scalar(2);

The return type of this formula is determined automatically, without expressing the Unit
template arguments directly. The returned unit is a joule, which can also be described
as a kilogram x meter?/ second?, as our test program illustrates:

#include <type_traits> // std::is_same

void f1()
{

using Joules = Unit<2, 1, -2>; // energy in joules
auto ke = kineticEnergy(Kilograms(4.0), Mps(12.5));

static_assert(std::is_same<decltype(ke), Joules>::value, "");

Because of automatic return-type deduction, naming the Unit instantiation of each inter-
mediate computation within kineticEnergy was unnecessary. The static_assert in the
code above proves that our formula has returned the correct final unit.

1196

lorihughes
Highlight

lorihughes
Cross-Out

lorihughes
Inserted Text
(nontemplate) functions

